166 research outputs found

    Shell Evolution towards Ni 78: Low-Lying States in Cu 77

    Get PDF
    The level structure of the neutron-rich Cu77 nucleus is investigated through β-delayed γ-ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of Ni77 are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in Cu77 are identified for the first time by correlating γ rays with the β decay of Ni77, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near Ni78 and suggests a single-particle nature for both the 5/21- and 3/21- states in Cu77, leading to doubly magic Ni78. © 2017 American Physical Society

    Observation of Anomalous Internal Pair Creation in 8^8Be: A Possible Signature of a Light, Neutral Boson

    Full text link
    Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV state (Jπ=1+J^\pi=1^+, T=1T=1) \rightarrow ground state (Jπ=0+J^\pi=0^+, T=0T=0) and the isoscalar magnetic dipole 18.15 MeV (Jπ=1+J^\pi=1^+, T=0T=0) state \rightarrow ground state transitions in 8^{8}Be. Significant deviation from the internal pair creation was observed at large angles in the angular correlation for the isoscalar transition with a confidence level of >5σ> 5\sigma. This observation might indicate that, in an intermediate step, a neutral isoscalar particle with a mass of 16.70±0.35\pm0.35 (stat)±0.5\pm 0.5 (sys) MeV/c2/c^2 and Jπ=1+J^\pi = 1^+ was created.Comment: 5 pages, 5 figure

    β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N = 82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

    Get PDF
    The β-decay half-lives of 110 neutron-rich isotopes of the elements from 37Rb to 50Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell eff

    β decay of 129 Cd and excited states in 129 In

    Get PDF
    The β decay of Cd129, produced in the relativistic fission of a U238 beam, was experimentally studied at the RIBF facility at the RIKEN Nishina Center. From the γ radiation emitted after the β decays, a level scheme of In129 was established comprisin

    Collectivity evolution in the neutron-rich Pd isotopes towards the N=82 shell closure

    Full text link
    The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign to the respective 2+ -> 0+ decays. In addition, a candidate for the 4+ state at 1164(20) keV was observed in 122Pd. The resulting Ex(2+) systematics are essentially similar to those of the Xe (Z=54) isotopic chain and theoretical prediction by IBM-2, suggesting no serious shell quenching in the Pd isotopes in the vicinity of N=82

    Nuclear structure study of 19,20,21N nuclei by gamma spectroscopy

    Get PDF
    The structure of neutron rich nitrogen nuclei has been studied by use of neutron removal reaction and inelastic scattering. Mass and charge deformations have been deduced for the first excited state of 21N, which indicates the partial persitence of the N=14 subshell closure in nitrogen isotopes. The spectroscopic information obtained on the structure of 19,20,21N confirms the results from a previous experiment

    Structure of 136Sn and the Z = 50 magicity

    Get PDF
    The first 2+ excited state in the neutron-rich tin isotope 136Sn has been identified at 682(13) keV by measuring γ -rays in coincidence with the one proton removal channel from 137Sb. This value is higher than those known for heavier even-even N = 86 isotones, indicating the Z = 50 shell closure. It compares well to the first 2+ excited state of the lighter tin isotope 134Sn, which may suggest that the seniority scheme also holds for 136Sn. Our result confirms the trend of lower 2+ excitation energies of even-even tin isotopes beyond N = 82 compared to the known values in between the two doubly magic nuclei 100Sn and 132Sn. © The Author(s) 2014.published_or_final_versio
    corecore