190 research outputs found

    Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System

    Get PDF
    The performances of a gas-solid two-dimensional fluidized bed reactor in photocatalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UVA-LEDs), have been compared. In the photocatalytic oxidative dehydrogenation of cyclohexane to benzene on catalyst the use of UVA-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UVA-LEDs are due to the UVA-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photoreactor windows, reducing the dispersion outside of photoreactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated and ethanol to acetaldehyde on

    Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses

    Get PDF
    In this work, the results of gas phase cyclohexane photocatalytic oxidative dehydrogenation on MoOx/SO4/TiO2 catalysts with DRIFTS analysis are presented. Analysis of products in the gas-phase discharge of a fixed bed photoreactor was coupled with in situ monitoring of the photocatalyst surface during irradiation with an IR probe. An interaction between cyclohexane and surface sulfates was found by DRIFTS analysis in the absence of UV irradiation, showing evidence of the formation of an organo-sulfur compound. In particular, in the absence of irradiation, sulfate species initiate a redox reaction through hydrogen abstraction of cyclohexane and formation of sulfate (IV) species. In previous studies, it was concluded that reduction of the sulfate (IV) species via hydrogen abstraction during UV irradiation may produce gas phase SO2 and thereby loss of surface sulfur species. Gas phase analysis showed that the presence of MoOx species, at same sulfate loading, changes the selectivity of the photoreaction, promoting the formation of benzene. The amount of surface sulfate influenced benzene yield, which decreases when the sulfate coverage is lower. During irradiation, a strong deactivation was observed due to the poisoning of the surface by carbon deposits strongly adsorbed on catalyst surface

    Selective Oxidation of Benzene to Phenol using Fe-N-codoped TiO2 Embedded in Monolithic Syndiotactic Polystyrene Aerogel

    Get PDF
    A polymeric composite consisting of Fe-N-codoped TiO2 (Fe-N-TiO2) dispersed into a monolithic syndiotactic polystyrene (sPS) aerogel (Fe-N-TiO2/sPS, 10/90 w/w) was used for the photocatalytic hydroxylation of benzene to phenol in presence of H2O2 to enhance the phenol selectivity and yield compared to Fe-N-TiO2 in powder form. Under UV light, Fe-N-TiO2/sPS composite aerogel showed selectivity to phenol of 43%, one order of magnitude more than the selectivity showed by Fe-N-TiO2 in powder form (4%). Under visible light irradiation Fe-N-TiO2 in powder form did not produce phenol, whereas selectivity to phenol of Fe-N-TiO2/sPS was 16%. The polymeric composite was recycled and reused up to five times without a significant decrease in photocatalytic oxidation activity in terms of benzene conversion and phenol yield, indicating the stability of the catalytic composite. Therefore, it was proved that the obtained photoreactive polymer composite could allow the development of innovative sustainable processes able to realize the selective oxidation reactions of aromatic hydrocarbons under mild conditions

    Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System

    Get PDF
    The performances of a gas-solid two-dimensional fluidized bed reactor in photocatalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UVA-LEDs), have been compared. In the photocatalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO2-A12O3 catalyst the use of UVA-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UVA-LEDs are due to the UVA-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photoreactor windows, reducing the dispersion outside of photoreactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx/-A12O3 and ethanol to acetaldehyde on VOx/TiO2

    Immobilised cerium-doped zinc oxide as a photocatalyst for the degradation of antibiotics and the inactivation of antibiotic-resistant bacteria

    Get PDF
    The threat of antibiotic resistance to the wellbeing of societies is well established. Urban wastewater treatment plants (UWTPs) are recognised sources for antibiotic resistance dissemination in the environment. Herein a novel cerium-doped zinc oxide (Ce-ZnO) photocatalyst is compared to ZnO and the benchmark TiO 2 -P25 in the immobilised form on a metallic support, to evaluate a photocatalytic process as a possible tertiary treatment in UWTPs. The catalysts were compared for the removal of two antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), and for the inactivation of Escherichia coli (E. coli) strain DH5-Alpha in isotonic sodium chloride solution and of autochthonous bacteria in real secondary wastewater. In real wastewater, E. coli and other coliforms were monitored, as well as the respective fractions resistant to ofloxacin and azithromycin. In parallel, Pseudomonas aeruginosa and the respective sub-population resistant to ofloxacin or ciprofloxacin were also monitored. Photocatalysis with both ZnO and Ce-ZnO was faster than using TiO 2 -P25 at degrading the antibiotics, with Ce-ZnO the fastest against SMX but slower than undoped ZnO in the removal of TMP. Ce-ZnO catalyst reuse in the immobilised form produced somewhat slower kinetics maintained >50% of the initial activity, even after five cycles of use. Approximately 3 log10 inactivation of E. coli in isotonic sodium chloride water was recorded with reproducible results. In the removal of autochthonous bacteria in real wastewater, Ce-ZnO performed better (more than 2 log values higher) than TiO 2 -P25. In all cases, E. coli and other coliforms, including their resistant subpopulations, were inactivated at a higher rate than P. aeruginosa. With short reaction times no evidence for enrichment of resistance was observed, yet with extended reaction times low levels of bacterial loads were not further inactivated. Overall, Ce-ZnO is an easy and cheap photocatalyst to produce and immobilise and the one that showed higher activity than the industry standard TiO2-P25 against the tested antibiotics and bacteria, including antibiotic-resistant bacteria

    Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts

    Get PDF
    In this work it was studied the efficiency of a photocatalytic process for the removal of patent blue V. This dye is very difficult to remove by conventional treatments such as adsorption or coagulation therefore the photocatalytic process is a very interesting alternative for the removal this dye mainly because it does not require expensive oxidants and it can be carried out at mild temperatures and pressures. In this work it was tested the efficiency of Au-TiO2 and Pt-TiO2 photocatalysts in the Patent blue V removal. The Au-TiO2 catalysts were prepared by two different methods: chemical reduction and photochemical deposition; Pt-TiO2 catalysts were obtained only by photochemical deposition. In the synthesis of the catalysts prepared by photochemical deposition, it was evaluated the influence of some parameters, such as deposition time and the intensity of the light source over the physicochemical properties and photocatalytic activity of the materials obtained. An analysis of the effect of the catalyst dosage and initial patent blue V concentration over the dye degradation efficiency was also attempted. In general, it was observed that the presence of Au or Pt on TiO2 enhances the patent blue V photodegradation; it was found that noble metal particle size and distribution on TiO2 surface are important factors influencing the dye removal. The highest dye degradation was obtained over the Au-TiO2 catalyst prepared by photochemical deposition, using high light intensity and 15 min of deposition time during the synthesis. A discoloration and a total organic carbon (TOC) removal of 93 and 67% respectively, were obtained over this material after 180 min of UV irradiation. These values are higher than that the obtained on S-TiO2 (discoloration and TOC removal of about 25% and 3%, respectively)

    Photocatalytic Removal of Methyl Orange Azo Dye with Simultaneous Hydrogen Production Using Ru-Modified ZnO Photocatalyst

    No full text
    The aim of this work is to demonstrate the effectiveness of the photocatalytic process in the Methyl Orange azo dye degradation and simultaneous H2 production by using ZnO doped with ruthenium. Ru-modified ZnO photocatalysts were prepared by precipitation method and were characterized by different techniques (XRF, Raman, XRD, N2 adsorption at −196 °C, and UV–vis DRS). The experiments were carried out in a pyrex cylindrical reactor equipped with a nitrogen distributor device and irradiated by four UV lamps with the main wavelength emission at 365 nm. Different Ru amounts (from 0.10 to 0.50 mol%) were tested in order to establish the optimal amount of the metal to be used for the ZnO doping. The photocatalytic activity was evaluated both in terms of Methyl Orange removal and hydrogen production. The experimental results showed that the best activity, both in terms of H2 production and Methyl Orange degradation, was obtained with the Ru-modified ZnO photocatalyst at 0.25 mol% Ru loading. In particular, after four hours of UV irradiation time, the discoloration and mineralization degree were equal to 83% and 78%, with a simultaneous hydrogen production of 1216 µmol L−1. This result demonstrates the ability of the photocatalytic process to valorize a dye present in wastewater, managing to obtain a hydrogen production comparable with the data present in the literature today in the presence of other sacrificial substances
    corecore