7 research outputs found

    Asymmetric wicking and reduced evaporation time of droplets penetrating a thin double-layered porous material

    Get PDF
    We study numerically and experimentally the penetration and evaporation dynamics of droplets wicking into a thin double-layered porous material with order-of-magnitude difference in the physical properties between the layers. We show that such double-layered porous materials can be used to create highly asymmetrical wicking properties, preventing liquid droplets wicking from one surface to the other, while allowing wicking in the reverse direction. In addition, these double-layered porous materials are shown to reduce the evaporation time of droplets penetrating into the porous material, compared with a single-layered porous material of equal thickness and physical properties similar to either of the layers

    Enhanced Lifetime of Cyanine Salts in Dilute Matrix Luminescent Solar Concentrators via Counterion Tuning

    No full text
    Organic luminophores offer great potential for energy harvesting and light emission due to tunable spectral properties, strong luminescence, high solubility, and excellent wavelength selectivity. To realize their full potential, the lifetimes of luminophores must extend to many years under illumination. Many organic luminophores, however, have a tendency to degrade and undergo rapid photobleaching, leading to the perception of intrinsic instability of organic molecules. In this work, we demonstrate that by exchanging the counterion of a heptamethine cyanine salt the photostability and corresponding lifetime of dilute cyanine salts can be enhanced by orders of magnitude from 10 h to an extrapolated lifetime of greater than 65,000 h under illumination. To help correlate and comprehend the underlying mechanism behind this phenomenon, the water contact angle and binding energy of each pairing were measured and calculated. We find that increased water contact angle, and therefore increasing hydrophobicity, generally correlates to improved lifetimes. Similarly, a lower absolute binding energy between cation and anion correlates to increased lifetimes. Utilizing the binding energy formalism, we predict the stability of a new anion and experimentally verify it with good consistency. Moving forward, these factors could be used to rapidly screen and identify highly photostable organic luminophore salt systems for a range of energy harvesting and light-emitting applications

    Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance

    Get PDF
    Fair and meaningful device per- formance comparison among luminescent solar concentrator- photovoltaic (LSC-PV) reports cannot be realized without a gen- eral consensus on reporting stan- dards in LSC-PV research. There- fore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving for- ward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these prac- tices, a checklist of actionable items is provided to help stan- dardize the characterization/re- porting protocols and offer a set of baseline expectations for au- thors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful ad- vances

    Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance

    No full text
    Fair and meaningful device performance comparison among luminescent solar concentrator-photovoltaic (LSC-PV) reports cannot be realized without a general consensus on reporting standards in LSC-PV research. Therefore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving forward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these practices, a checklist of actionable items is provided to help standardize the characterization/reporting protocols and offer a set of baseline expectations for authors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful advances

    Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance

    Get PDF
    Fair and meaningful device performance comparison among luminescent solar concentrator-photovoltaic (LSC-PV) reports cannot be realized without a general consensus on reporting standards in LSC-PV research. Therefore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving forward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these practices, a checklist of actionable items is provided to help standardize the characterization/reporting protocols and offer a set of baseline expectations for authors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful advances

    Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance

    No full text
    Fair and meaningful device performance comparison among luminescent solar concentrator-photovoltaic (LSC-PV) reports cannot be realized without a general consensus on reporting standards in LSC-PV research. Therefore, it is imperative to adopt standardized characterization protocols for these emerging types of PV devices that are consistent with other PV devices. This commentary highlights several common limitations in LSC literature and summarizes the best practices moving forward to harmonize with standard PV reporting, considering the greater nuances present with LSC-PV. Based on these practices, a checklist of actionable items is provided to help standardize the characterization/reporting protocols and offer a set of baseline expectations for authors, reviewers, and editors. The general consensus combined with the checklist will ultimately guide LSC-PV research towards reliable and meaningful advances

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore