384 research outputs found

    Electromagnetic Wave Scattering from Magnetic Fluctuations in Tokamaks

    Get PDF
    Cross sections are calculated for electromagnetic wave scattering and mode transformation from magnetic and density fluctuations in a homogeneous plasma. For the special case of scattering perpendicular to the magnetic field, density fluctuations scatter ordinary to ordinary and extraordinary to extraordinary modes-but cannot transform these modes. On the other hand, magnetic fluctuations perpendicular to the field can transform modes but cannot scatter on a single branch. For incident frequencies on the order of the electron plasma frequency or gyrofrequency, the cross sections for scattering and transformation due to field and density fluctuations have a similar value. Estimates are given for scattering in a tokamak plasma with special emphasis on the question of how to detect and localize magnetic field fluctuations. Ray tracing calculations, estimates of practical limitations on polarization technique, and lower bound estimates on density and magnetic fluctuation levels show that magnetic fluctuations can be detected and localized by this method

    A unitary quantum lattice gas algorithm for two dimensional quantum turbulence

    Get PDF
    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) at zero temperature. A special unitary evolution algorithm, the quantum lattice gas (QLG) algorithm, is employed to simulate the Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a short Poincar\'e recurrence time. It is demonstrated that such short recurrence times are destroyed as the nonlinear interaction is strengthened. The similar loss of Poincar\'e recurrence is also reported in 3D QT [1] Energy cascades for 2D QT are considered to examine whether 2D QT exhibits inverse cascades as in 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades-dual cascades being a hallmark of 2D classical turbulence

    Measurement of Magnetic Fluctuations by O-X Mode Conversion

    Get PDF
    The possibility of measuring magnetic fluctuations in a fusion plasma is considered by examining the O→X mode conversion. Under certain conditions and with good angular resolution, this mode conversion can be attributed to the presence of magnetic fluctuations even though the level of these fluctuations is much lower than that of density fluctuations. Some nonideal effects such as mode polarization mismatch at the plasma edge are also discussed

    Lattice Quantum Algorithm for the Schrodinger Wave Equation in 2+1 Dimensions With a Demonstration by Modeling Soliton Instabilities

    Get PDF
    A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. The model is tested on the transverse modulation instability of a one dimensional soliton wave train, both in its linear and non-linear stages. In the integrable cases where analytical solutions are available, the numerical predictions are in excellent agreement with the theory

    Quantum Algorithm for Bose-Einstein Condensate Quantum Fluid Dynamics: Twisting of Filamentary Vortex Solitons Demarcated by Fast Poincare Recursion

    Get PDF
    The dynamics of vortex solitons is studied in a BEC superfluid. A quantum lattice-gas algorithm (measurementbased quantum computation) is employed to examine the dynamical behavior vortex soliton solutions of the Gross-Pitaevskii equation (ø4 interaction nonlinear Schroedinger equation). Quantum turbulence is studied in large grid numerical simulations: Kolmogorov spectrum associated with a Richardson energy cascade occurs on large flow scales. At intermediate scales, a new k-6 power law emerges, due to vortex filamentary reconnections associated with Kelvin wave instabilities (vortex twisting) coupling to sound modes and the exchange of intermediate vortex rings. Finally, at very small spatial scales a k-3power law emerges, characterizing fluid dynamics occurring within the scale size of the vortex cores themselves. Poincaré recurrence is studied: in the free non-interacting system, a fast Poincaré recurrence occurs for regular arrays of line vortices. The recurrence period is used to demarcate dynamics driving a nonlinear quantum fluid towards turbulence, since fast recurrence is an approximate symmetry of the nonlinear quantum fluid at early times. This class of quantum algorithms is useful for studying BEC superfluid dynamics and, without modification, should allow for higher resolution simulations (with many components) on future quantum computers

    Higher Order Isotropic Velocity Grids in Lattice Methods

    Get PDF
    Kinetic lattice methods are a very attractive representation of nonlinear macroscopic systems because of their inherent parallelizability on multiple processors and their avoidance of the nonlinear convective terms. By uncoupling the velocity lattice from the spatial grid, one can employ higher order (non-space-filling) isotropic lattices-lattices which greatly enhance the stable parameter regions, particularly in thermal problems. In particular, the superiority of the octagonal lattice over previous models used in 2D (hexagonal or square) and 3D (projected face-centered hypercube) is shown

    Turbulence Modeling of the Toroidal Wall Heat Load Due to Shear Flows over Cavities in the Neutral Gas Blanket Divertor Regime

    Get PDF
    Heat loads to the target plate in reactor tokamaks are estimated to be orders of magnitude higher than those that can be withstood by known materials. In regimes of plasma detachment, there is strong evidence that plasma recombination occurs near the divertor plate, leading to a cold neutral gas blanket. Because of the strong coupling between the plasma and the neutrals within the divertor region, there is significant neutral flows along field lines up to Mach 1.2 and Reynolds numbers over 1000. The effects of three dimensional (3D) neutral turbulence within the gas blanket on heat deposition to the toroidal wall are examined. Both two dimensional (2D) mean shear flows over toroidal cavities as well as a fully 3D initial value problem of heat pulse propagation are considered. The results for algebraic stress model, K-ϵ and laminar flows are compared. It is found that 3D velocity shear turbulence has profound effects on the heat loads, indicating that simple (linear) Reynolds stress closure schemes are inadequate

    Quantum Lattice Representation of Dark Solitons

    Get PDF
    The nonlinear Schrodinger (NLS) equation in a self-defocusing Kerr medium supports dark solitons. Moreover the mean field description of a dilute Bose-Einstein condensate (BEC) is described by the Gross-Pitaevskii equation, which for a highly anisotropic (cigar-shaped) magnetic trap reduces to a one-dimensional (1D) cubic NLS in an external potential. A quantum lattice algorithm is developed for the dark solitons. Simulations are presented for both black (stationary) solitons as well as (moving) dark solitons. Collisions of dark solitons are compared with the exact analytic solutions and coupled dark-bright vector solitons are examined. The quantum algorithm requires 2 qubits per scalar field at each spatial node. The unitary collision operator quantum mechanically entangles the on-site qubits, and this transitory entanglement is spread throughout the lattice by the streaming operators. These algorithms are suitable for a Type-II quantum computers, with wave function collapse induced by quantum measurements required to determine the coupling potentials

    Effects of Large Aspect Ratios and Fluctuations on Hard X-Ray-Detection in Lower Hybrid Driven Divertor Tokamaks

    Get PDF
    It is shown that lower hybrid wave scattering from fluctuations plays a critical role in large aspect ratio divertor plasmas even through the edge density fluctuation levels are only at 1%. This is seen in the theoretically calculated electron power-density profiles which can be directly correlated to the standard experimental chordal hard x-ray profiles. It thus seems that fluctuation effects must be included in determining rf current-density profiles
    • …
    corecore