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Measurement of magnetic fluctuations by 0.-. X mode conversion 
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George Vahala 
Department of Physics. College of William & Mary, Williamsburg, Virginia 23185 

N. Bretz 
Plasma Physics Laboratmy, Princeton University, Princeton, New Jersey 08544 

(Presented 8 May 1990) 

The possibility of measuring magnetic fluctuations in a fusion plasma is considered by 
examining the o-x mode cOllversion. Under certain conditions and with good angular 
resolution, this mode conversion can be attributed to the presence of magnetic fluctuations 
even though the level of these fluctuations is much lower than that of density fluctuations. 
Some nonideal effects such as mode polarization mismatch at the plasma edge are also 
discussed. 

. I. INTRODUCTION 

It is of considerable importance to develop diagnostics 
that can detect magnetic fluctuations in a fusion plasma, 
especially because of their expected interconnection with 
transport. I Such a diagnostic must overcome a universal fea
ture present in tokamaks: the level of magnetic fluctuations, 
8B lBo, is much lower than that of the electron density fluc
tuations, DniNo. Typically, 8nl No is determined by electron 
drift wave fluetuations: 2 8nINo;:::;3pJL Il , wherep, is basi
cally the electron gyroradius and LII the density gradient 
length scale. On the other hand, magnetic fluctuations are 
driven by magnetohydrodynamic processes which have a 
low-frequency, long-wavelength coherent component and a 
high-frequency, short-wavelength incoherent part. Scatter
ing experiments typically measure large 111 (;:::; 100) fluctu
ations, where m is the poloidal mode number. These magnet
ic fluctuations have been measured in the edge region with 
Mirnov loops,3 and, in very small devices, with interior mag
netic probes.4 High-frequency probe measurements·1 give 
MJ / Bo;:::; 10-'\-10-- 5 in the interior of Microtor forfrequen
cies ,;;;30 kHz, while oB IBo;:::; 10 ~-1O (, at the edge of To
karnak Fusion Test Reactor (TFTR)5 in the frequency 
range lOO-IS0 kHz. Thus, for the interior of TFTR one 

" might expect a fluctuation ratio 

( 
(bE 2 )1 B 2 ) 

I 0 ~ 10 4_10 5. 
2 2 ~ 

(on )INo ",;',>] 

(1) 

Here we explore the possibilities of electromagnetic 
scattering of an ordinary (0) --+ extraordinary (X) mode as a 
possible diagnosticS in a high-temperature plasma. The inci
dent 0 mode approaches a cutoff near the local electron plas
ma frequency while the X mode will propagate through this 
cutoff layer and he detected. In particular, for mode propa
gation perpendicular to the magnetic field B, the 0 mode is 
linearly polarized while the X mode is elliptically polarized. 
If the incident and scattered angles are chosen to be both 
perpendicular to the B field, then density fluctuations, being 
scalar in nature, cannot force this 0 .... X mode conversion. 
However, the tensorial magnetic fluctuations can facilitate 
in this mode conversion. 

These conclusions are strictly true only for exactly per
pendicular propagation to B. Because the density fluctu-

ation levels are so much higher than those of the magnetic 
fluctuations, Eq. (1), the effects of finite beamwidth and 
finite angular resolution should also be considered. These 
effects are examined here by following a bundle of modes 
using a toroidal ray tracing code and examining the refrac
tion of this bundle. For an appropriate choice of scattering 
parameters, we find in Sec. II that refractive effects on the 
mode bundle are very small. This then allows us, in Sec. III, 
to use the scattering formalism of Sitenkd' for a locally ho
mogeneous plasma to derive the differential scattering cross 
section for an Oc>.X mode conversion. Finally in Sec. IV, we 
show that the generation of X modes due to incident polar
ization mismatch with B at the plasma edge and the subse
quent X ->X scattering by density fluctuations will not mask 
the O~X conversion due to magnetic fluctuations. 

It RAY TRACING 

To examine the refractive effects on a bundle of 0 modes 
incident nearly perpendicular to B, from either the low or 
high magnetic field side, we employ the TORCH ray tracing 
code. 7 The 0 modes (with incident frequency 0);) will be 
reflected near the cutoff position rc where the incident fre
quency becomes equal to the local electron plasma frequen
cy, (Ui = OJ],<, (re ), as shown in Fig. 1 (a). On the other hand, 
in the neighborhood of re , a corresponding bundle of X 
modes will propagate out of the plasma perpendicular to B 
and with little refraction, as shown in Fig. 1 (h). Moreover,5 
the 0 modes and X modes that propagate perpendicular to B 
retain their identity in that the polarization of these modes 
remains invariant relative to the local magnetic field in the 
eikonal approximation. This is also consistent with the ob
servationS of tokamak emission at 2(oco in which the perpen
dicularly polarized mode retained its orientation relative to 
B in the emitting layer as well as to B at the plasma edge. 

One can thus conclude from Fig. 1 that under appropri
ate scattering orientations, the O-X mode conversion 
around rc can be examined by treating the system as locally 
homogeneous. 

III. SCATTERING THEORY 

Consider the Sitenko" formalism for scattering from 
fluctuations in a locally homogeneous magnetized plasma. 
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FIG.!. (a) Result of ray tracing in the poloidal plane (R,Z) for a bundle of 
45 GHz 0 modes (eight modes with a total angular width 4' about 17/2) 
incident on the high field side in TFTR from below. The 0 modes approach 
a cutoff at Y, and are reflected (with some refraction) out afthe plasma. (b) 

A bundle of 45 GHz X-mode ray trajectories in the pa\oidal plane emanat
ing from r,., perpendicular to B. Refractive cftccis in the poloidal plane arc 
very small, and near the cutoff r,. there is 110 refraction in the X modes since 

tlle refractive index here is unity. 

The incident plane electromagnetic wave satisfies the wave 
equation 

1 a 2E inc 
VXVXEine +1£;'--,-=0, (.'- at-

where £i is the plasma dielectric function. The scattered field 
E, is given by 

1 alE, 41T aJ 
"i1X"i1XE\ + 1 lOs) -- (.'2 -at' c- (it-

where J is the current due to the interaction of the incident 
wave ((ui,k j ) with plasma density and magnetic fluctuations 
8n (' ({tJ,k) and DB (ru,k). From the conservation of momen
tum and energy, the scattered wave number and frequency 
satisfy k, = k j + k and 0)\ -= (U, + OJ. Thus 

[e:~~ (k'.~~',(3 _ OafJ ) + Ea/,«(us,k,)] E'./i(OJ"k,) 

( 

OJi . {me (w,k) 
= E ille .!! (oJ"k i ) --[ Da'i .- Eap, (wj,k i )] -----

w,. 1Vo 

ie Wi 
+---2-[8,,), -E"y(u)"k,)] 

n1e C wpe 

X E,_:;,/ [ D ;''(! - t:~fJ «(()ok )] bB ,/ «(i),k) ) , 

where E)'1;11 is the standard Levi-Citiva symbol, and No the 
background density (with summation over repeated Greek 
subscripts). Hence the radiation field at the observation po
sition f, is 
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where L' denotes the sum over all wave numbers k, that lie 
on the surface A = 0 such that the group velocity (in the 
direction V A) is parallel to the observer position rs. Cs is the 
normalized polarization of the scattered electric field and A 
is defined by 

__ [e2k; ( kw k',/3 .) ] A=det --.2- ---2- -b"/3 + Cnfj(o)"k,.) . 
(u,. \ k, 

K is the Gaussian curvature of the surface A = 0 at the 
points ks' From the average power at rs one can readily de
termine the differential scattering cross section 

d -'G[If:'12 (8n
2

)." .• +w~Ju.~ * (8B"8BO )",,k 
(7 -!o 2 --4- OaO(J 2 

No OJ DC Bo 

2{ucc O)s ( . + --7-- 1m ~a~ 
(u pe 

(2) 

where 

~=e~a[Ea/3(Wi,ki) -baffle,.!;, 

aa=Eu/lye~~[£,:.-t3«(u."k;) -O;;f;J [E)'p(oJi,ki) -i5yp le i ,(" 

e i is the incident electric field polarization vector and (Uce is 
the electron gyrofrequency. G is a complicated geometric 
factor which only affects the overall magnitude of the cross 
section for a particular scattering process. It is considered in 
some detail by Hughes and Smith9 following the analysis of 
Simonich and Yeh. 10 The third term in Eq. (2), the cross 
correlation term, can be shown to have a negligible effect on 
the differential cross section dO' and so need not be consid
ered further. Our major concern is to be able to make the 
dominant contribution to cia come from magnetic fluctu
ations, the second term in Eq. (2). 

For perpendicular propagation to B (OJ = 1'1"/2 = 0" 
Fig. 2), one finds from Eq. (2) that an 0 -> X mode conver
sion can only arise from the presence of magnetic fluctu
ations in the plasma. However, one must incorporate the 
effects of finite beamwidths and finite angular resolution, 
especially since the level of magnetic fluctuations is general
ly much lower than that of the density fluctuations. In Fig. 3 
we plot the relative contribntions of the second and first 
terms in da, Eq. (2), as a function of the relative intensities 
of magnetic/density fluctuations for various tokamaks for a 
scattering angle of <P::::; On. Typically, we assume a total an
gular spread of 1!l about <P = On and consider an 0 mode 

z 

Bo 

k 
I 

FIG. 2. Scattering geometry used in calculating the differential scattl,ring 
cross section dlT (here we choose 0, -_. 8, = rr/2). The optimal scattering 

angle is forward scattering. <I> ::::0" . 
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FIG. 3. Relative contribution of magnetic to density fluctuations to the dif
ferential scattering cross section da as a function of their relative intensities 
for an angular width of I" (unlabeled) or 2" (labeled) about n-/2. Various 
tokamaks are considered (TFTR:u.>, ~ 45 GHz, CIT: (U, ~, 105 and 150 

GHz, JET:u.>, =- 45 and 60 GHz). The advantage of using the high-field side 
over the low-field side is somewhat illusionary. It is due to the larger gyro
frequency at r,., but to sustain the same level of (oB, }/HZ) one requires a 

correspondingly higher level of magnetic fluctuations. 

incident along the midplane on both the low-field and high
field sides. For typical drift wave fluctuation magnitudes2 

and a TFTR plasma with an incident 0 mode of frequency 
OJ; = 45 GHz, an appropriate level of magnetic to density 
fluctuations is' 

(oB2)/B2 
1 0 ;:::;6.0X 10-5. 

(8n2>/N~ 

If the mode is incident on the low-field side, then the magnet
ic fluctuation contribution to the differential cross section 
for the O-X conversion is about 14 times greater than that 
arising from the density fluctuation contribution, However, 
if the 0 mode is injected on the high-field side (Fig. 1), then 
the ratio of magnetic to density contribution to the differen
tial cross section rises to a factor of 36. 

IV. DISCUSSION 

An important nonideal effect that remains to he dis
cussed is the 0 ..... X conversion that can occur due to mode 
polarization mismatch with B near the plasma edge. II This 
X mode can then be scattered by density fluctuations into 
another X mode, possibly masking the a ..... x conversion due 
to magnetic fluctuations. However, from a full wave calcula
tion, Brambilla and Moresco'2 have shown that the power 
fraction converted to an X mode from the incident 0 mode 
due to polarization mismatch is ;:::; 10-5 for low-shear toka-
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mak plasmas. Hence, for small forward scattering angles 
«I>;:::; Oll , see Fig. 2) one finds from Eq. (2) that the cross 
section ratio for a-x scattering by magnetic fluctuations to 
that for 0...." X due to edge mismatch with B and subsequent 
X -X due to density fluctuations (in the same frequency 
range as the magnetic fluctuations and an (llce/lU; ;:::;3.96) 

drl';.x GbB {j).~e «oBi > /B~) 5 
/j --- --2 2 - X 10 . 

dC7(;'.x_x Gbn OJ; (on >/N~ 

Moreover, the corresponding geometric factor for X-X 
scattering is G,," 'ZOJf/OJ~c ;:::;0.064, whileforO-Xscattering 
the geometric factor G,\B ~ 1, due to the cutoff layer. Thus, it 
appears that polarization mode mismatch at the edge will 
not mask the effect of magnetic fluctuation scattering even 
for magnetic to density fluctution ratios as low as 10- 6

• Oth
er nonideal effects, such as the horn limitations on the polar
ization of the emitted wave, will be considered in more detail 
elsewhere. 

Hence it appears that millimeter 0-X mode conversion 
can be used as a diagnostic for magnetic fluctuations. 
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