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Unitary-quantum-lattice algorithm for two-dimensional quantum turbulence
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Quantum vortex structures and energy cascades are examined for two-dimensional quantum turbulence (2D
QT) at zero temperature. A special unitary evolution algorithm, the quantum lattice algorithm, is employed to
simulate the Bose-Einstein condensate governed by the Gross-Pitaevskii (GP) equation. A parameter regime is
uncovered in which, as in 3D QT, there is a short Poincaré recurrence time. It is demonstrated that such short
recurrence times are destroyed by stronger nonlinear interaction. The similar loss of Poincaré recurrence is also
seen in the 3D GP equation. Various initial conditions are considered in an attempt to discern if 2D QT exhibits
inverse cascades as is seen in 2D classical turbulence (CT). In our simulation parameter regimes, no dual cascade
spectra were observed for 2D QT—unlike that seen in 2D CT.

DOI: 10.1103/PhysRevE.84.046701 PACS number(s): 05.10.−a, 67.25.dk

I. INTRODUCTION

A thorough understanding of vortex motion in turbulence
remains an important challenge [1]. Now in classical turbu-
lence, the vortex cannot be precisely defined and is viewed
as a continuous property of the fluid. However in quantum
turbulence (QT) the quantum vortex is a topological singularity
with discrete quantized circulation. The size of the quantized
(isolated) vortex is characterized by the coherent length in
superfluid, a measure of the relative strength of the kinetic
energy. This makes QT, loosely defined as the dynamics of
tangled vortices in three dimensions (3D) or of regularly
or irregularly distributed vortex points in two dimensions
(2D) [1], a suitable prototype for understanding classical
turbulence (CT) [2,3], particularly in the very long wavelength
limit in which the discrete quantization of the vortices should
become unimportant. Additionally, since the turbulence driven
by a Bose-Einstein condensate (BEC) gas expansion displays
characteristics different from those of a trapped BEC gas [4],
there is much still to be understood in the dynamics of QT.

The evolution of QT in a 2D BEC gas at zero temperature
is well described by the mean-field GP equation for the one
particle wave function ψ :

i∂tψ = −∇2ψ + g|ψ |2ψ, (1)

where g is the nonlinear coupling constant for the weak
interactions among the ground-state bosons, in lattice units
where h̄ = 1 and m = 1/2. Here we omit the chemical
potential term −μψ because this term only adds a global
phase shift e−iμt to the wave function. One important feature
of the Gross-Pitaevskii (GP) system is that it is a Hamiltonian
system with exact conservation of energy.

If the phase-space dynamics of an energy-conserving
system is bounded then there will be a Poincaré recurrence
of the initial state. For continuous systems, the Poincaré
recurrence period TP is typically so extremely long that for all
practical purposes it can be almost considered to be infinite.
However, for certain discrete maps like the Arnold’s cat map,
TP can be unexpectedly very short. We shall find that there
is a class of initial conditions for the 2D GP equation for
which the Poincare recurrence time is on the order of O[104]

iterations on a 5122 grid. This Poincare recurrence time is
independent of the dimensionality of the dynamics—whether
2D or 3D [5]. Moreover the Poincare recurrence time scales
with diffusion ordering: as the (linear) grid is increased from
L1 to L2, the Poincare recurrence time TP increases by a factor
of (L2/L1)2—again independent of the dimensionality of the
dynamics. For a short Poincaré recurrence, the interaction is
required to be much smaller than the kinetic energy. Under
this condition, the BEC gas is highly dilute and the recurrence
time can be very short.

A. Superfluid theory

The simplest theory for a BEC in the zero-temperature limit
is given by Lagrangian density for a scalar complex field ψ :

L = i

2
(ψ†∂tψ − ψ∂tψ

†) − ∇ψ† · ∇ψ − g

2
(ψ†ψ)2. (2)

The invariance of L with respect to phase rotation, to space,
and to time translations yields the conservation of density,
momentum, and energy, respectively. The resulting set of
hydrodynamic equations is

∂tρ + ∇ · (ρv) = 0 (3a)

ρ(∂tv + v · ∇v) = −2ρ∇
(

g ρ − ∇2√ρ√
ρ

)
, (3b)

where ρ is the probability density and ρv the probability
momentum:

ρ ≡ ψ†ψ, (4a)
ρv ≡ i(ψ∇ψ† − ψ†∇ψ). (4b)

Equation (3a) is identified with the continuity equation of
fluid; while Eq. (3b) is recognized as the Euler equation for a
barotropic inviscid fluid. Notice that the pressure now consists
of both local and nonlocal terms: the normal (local) pressure

gρ2 and the quantum pressure −∇2√ρ√
ρ

, which is nonlocal. To
analyze the energy spectra of QT, the (constant) total energy

ET =
∫

dx2

(
1

2
ρ|v|2 + gρ2 + 2|∇√

ρ|2
)

(5)
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(in two spatial dimensions) is decomposed into three compo-
nents:

kinetic energy, EK = 1

2

∫
dx2 ρ|v|2; (6a)

internal energy, EI = g

∫
dx2 ρ2; (6b)

quantum energy, EQ = 2
∫

dx2 |∇√
ρ|2. (6c)

One important feature of QT is its compressibility. Much of
the CT literature has focused on incompressible turbulence but
there is sound wave emission [6] in a BEC gas. Therefore,
to compare QT with its classical counterpart, we further
decompose the kinetic energy into its compressible and
incompressible components. This is achieved by introduc-
ing the density-weighted velocity q = √

ρ v [7,8] and the
Helmholtz decomposition of a nonsingular vector field. The
longitudinal component of q contributes to the compressible
kinetic energy while the transverse component contributes to
the incompressible kinetic energy:

compressible, EC = (2π )2
∫

dk2 |q̃c|2; (7a)

incompressible, EIC = (2π )2
∫

dk2 |q̃ic|2, (7b)

where q̃c and q̃ic are defined as

q̃c ≡ k · q̃
k2

k, (8a)

q̃ic ≡ q̃ − k · q̃
k2

k, (8b)

with q̃ = q̃c + q̃ic being the Fourier transform of q. Conse-
quently, the energy density of incompressible kinetic energy
and compressible kinetic energy can be defined as

εc,ic(k) = k

∫ 2π

0
dθ |q̃c,ic(k,θ )|2, (9)

using polar coordinates k,θ .
For 2D classical incompressible turbulence, the conser-

vation (in the inviscid limit) of both the enstrophy, Z =∫
dr |∇ × v|2, and the energy has a profound effect on

energy transfer. Based on the assumption of incompressibility,
isotropy, and self-similarity, Kraichnan [9] and Batchelor [10]
have demonstrated that dual cascades exist in the inertial range,
with an inverse cascade of kinetic energy but a direct cascade
of enstrophy in wave number space with spectral exponents
for the kinetic energy spectrum:

inverse cascade, εic(k) ∝ k−5/3;

direct cascade, εic(k) ∝ k−3.

The existence of dual cascades is a hallmark of 2D (classical)
turbulence. In 3D CT, enstrophy (in the inviscid limit) is no
longer conserved and one only finds the direct cascade of
kinetic energy leading to the well-known Kolmogorov k−5/3

spectrum. In 2D, the inverse cascade dictates that the energy
is transferred to larger spatial scales, which is manifested by
the coalescence of eddies (with the same rotational sense)
into larger and larger vortices. On the other hand, the direct
cascade determines that the vorticity is cascaded to smaller
scales and dissipated away through viscosity at the end of the
inertial limit. However, for QT, vortices can be created via

nucleation [11] and annihilated through the mutual interaction
leading to the fusion of counter-rotating pairs, presumably due
to the quantum pressure in Eq. (3b). Thus enstrophy in 2D QT
is not conserved. Lacking the conservation of enstrophy and
because of compressibility effects, 2D QT does not necessitate
the existence of dual cascades.

The recent papers on 2D QT by Horng et al. [12] and
Numasato et al. [8] have examined the energy cascades.
Horng et al. [12] consider the initial conditions of a Gaussian
BEC cloud with embedded vortices in an external strong
potential well. In their quasistationary turbulent state they see
a clear demarcation between the spatial distribution of the
compressible kinetic energy from that of the incompressible
energy. In particular, the quantum vortices are predominantly
located outside the Thomas-Fermi radius along with the
incompressible kinetic energy distribution, while the com-
pressible kinetic energy distribution is predominantly located
within the Thomas-Fermi radius.

They find a dual cascade of the incompressible kinetic
energy spectrum—akin to 2D CT: an inverse energy cascade
with spectrum kα with α ∼ −5/3 (but with large error bars
in a very restricted k range) and a direct enstrophy cascade
with (a noisy) spectral exponent α ∼ −4. This deviates from
the standard 2D classical direct enstrophy cascade exponent
α = −3. Numasato et al. [8], on the other hand, have no
external trapping potential and the initial state is spatially
homogeneous with random phase in momentum space. In
contrast to Horng et al. [12], they find a direct cascade
of incompressible kinetic energy with a transient spectral
exponent α ∼ −5/3 (also with large error bars and quite
a narrow time window). In their final asymptotic state, the
vortices disappear from their system with the incompressible
kinetic energy tending to zero.

B. Organization

This paper is organized as follows. In Sec. II, we give only
a brief description of the quantum lattice algorithm (QLA)
since the 3D algorithm has been given in considerable detail
elsewhere [13]. In Sec. III, we observe the Poincaré recurrence
under two very different sets of initial conditions: in the first
case when there are initially quantum vortices present in the
system, and in the second case where the initial density is
uniform but the wave function has random phase fluctuations.
Thus in this case, there are initially no vortices, but the high
kinetic energy will rapidly lead to their creation. By gradually
increasing the ratio of the interacton energy to the kinetic
energy, we demonstrate the destruction of this fast Poincaré
recurrence. In Sec. IV, we examine the power law of the energy
cascades. A k−3 power law in the incompressible kinetic
energy is observed, while the compressible kinetic energy
spectrum is somewhat more complicated and, as in 3D QT,
exhibits multicascade behavior. However, this incompressible
power law is absent during the evolution of the turbulence
when the vortices are annihilated from the system and it
reappears when vortices are recreated. It is suggestive to
correlate the behavior of the large k range with this k−3

power law spectrum to that found by Nore et al. [7] on taking
Fourier transform of an isolated quantum vortex. Of course,
there are some differences: for the isolated quantum vortex
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there is no compressible kinetic energy, while from our 2D
QT simulations in the large k region the compressible kinetic
energy spectrum is also k−3 and of similar magnitude to the
incompressible spectrum.

A close examination of the incompressible energy spectra,
in our chosen parameter regimes, does not reveal the existence
of the Komolgorov k−5/3 spectrum which characterizes the
inverse energy cascade in 2D classical incompressible turbu-
lence. In Sec. V we summarize some of our conclusions.

II. QUANTUM LATTICE ALGORITHM

We shall find that the GP system can be recovered
from a simple two-qubit QLA algorithm with the basis set
|00〉,|01〉,|10〉,|11〉 at each grid point. Applying a series
of interleaved local unitary collision and unitary streaming
operations at each lattice site, the QLA algorithm models the
dynamics of the GP system in the long wavelength limit on
taking moments. To recover the GP for the single-particle
wave function [13,14] one need only consider just two of
these basis set elements. Consequently, the collision operator
Ĉ and streaming operator Ŝ can be reduced to 2 × 2 matrices.
The

√
SWAP gate is chosen as the collision operator in our

simulation:

Ĉ = 1

2

(
1 − i 1 + i

1 + i 1 − i

)
, (10)

with Ĉ4 = I , the identity operator. The streaming operator is
simply a shift operator defined by

Ŝ	xi ,0 = n + e	xi∂xi n̄, (11)

Ŝ	xi ,1 = n̄ + e	xi∂xi n, (12)

where n = 1
2 (1 − σz) and n̄ = 1

2 (1 + σz). σz is the standard
Pauli spin matrix. 	xi is the displacement along the lattice
ei direction. The subscript α in Ŝ	xi ,α indicates the particular
qubit being streamed. Interleaving the noncommuting opera-
tors Ĉ and Ŝ , one obtains the unitary evolution operator Û for
the 2D GP system [15]:

Ûα = Î2
x,αÎ2

y,α, (13)

Îxi ,α = Ŝ−	xi ,αĈŜ	xi,α Ĉ. (14)

The GP wave function is recovered from the qubit rep-
resentation by ψ(r,t) = q0(r,t) + q1(r,t), where qβ is the
(complex) probability amplitude of |01〉 and |10〉, for β = 0 or
1, respectively. Upon applying this evolution operator to this
spinor state, (

q0(t + 	t)

q1(t + 	t)

)
= Ûα

(
q0(t)

q1(t)

)
, (15)

one obtains the dynamical evolution of the wave function [13]

ψ(r,t + 	t) = ψ(r,t) + i	x2 1
2∇2ψ(r,t) + (−1)αO[	x3],

(16)

upon performing a Taylor expansion with respect to 	x.
Under diffusion ordering 	x2 ∼ 	t , this equation recovers
the free particle Schördinger equation up to order O[	x3]. (It
should be noted that the equation itself is ostensibly of order
O[	x2]—so that the numerical error term is of order O[	x].)

Now the error terms take the opposite sign for the evolution
operator affiliated with the different spinor component. Hence
by applying both evolution operators on the spinor state
q ≡ ( q0

q1
),

q(t + 	t) = Û1Û0 q(t), (17)

the error itself can be further reduced to order O[	x2].
To incorporate the effect of a potential, we introduce the

following unitary operator:

�[V (r,t)] = e−i	t V (r,t). (18)

V (r) is defined to be the nonlinear term in the GP equation:
g|ψ |2. With this implementation, the GP equation can be
reproduced up to the order O[	x2] through the following
unitary operation:

ψ(t + 	t) = q0(t + 	t) + q1(t + 	t),
(19)

q(t + 	t) = Û1�[V (t + 	t/2)/2]Û0�[V (t)/2]q(t),

FIG. 1. (Color online) The time evolution of the internal energy
for winding number (a) n = 1 and (b) n = 2 vortices. The first peak
corresponds to the semi-Poincaré period TP /2 and the second peak
corresponds to the full Poincaré period TP , where TP = 41 900 for
a spatial grid of 5122. The fluctuations in the internal energy are
stronger for n = 2 vortices, indicative of more vortex annihilations
and creations for the higher winding number case.
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FIG. 2. (Color online) The spatial distribution of the amplitude,
vorticity, and phase at t = 8000. A clear symmetry is observed
between quadrants that is due to the periodic boundary conditions
and the symmetry in the initial conditions. However, within each
quadrant, no vortex lattice is formed, which is most evident in the
amplitude plot (a), the vorticity plot (b), and the phase plot (c). Plot
(d) is a 1D plot of |ψ | along the y axis at x = 197, as indicated by
the black dashed line in the phase plot (c). This line passes through a
vortex pair (as identified by |ψ | = 0). The solid lines in plot (d) show
|ψ | ∼ r near the core region. The slopes are −3.44 × 10−4 for the
red line (left) and 3.46 × 10−4 for the green line (right), as expected
from symmetry.

where the potential V (t + 	t/2) is computed from the ψ(t +
	t/2) obtained via the one evolution operation Û0�[V (t)/2].
Note that diffusion ordering is used in obtaining the GP
equation from the QLA. This adds one additional parameter
a ≡ 	t in the GP equation to reflect the spatial and temporal
mesh of the lattice. Consequently, the GP equation simulated
by Eq. (19) is

i∂tψ = −∇2ψ + a g |ψ |2ψ + O[a2]. (20)

Due to the unitarity of the QLA, the norm of the spinor is
automatically conserved. However, in the standard QLA there
is a very small numerical loss in the mean density during the
simulation. This is largely due to the overlapping of the two
components of the spinor:

δρ̄ =
∫

dr(|ψ |2 − |q|2) =
∫

dr (|q0 + q1|2 − |q0|2 − |q1|2)

=
∫

dr(q∗
0 q1 + q0q

∗
1 ). (21)

If q0q1 is kept purely imaginary during the simulation,
the overlap between the two components vanishes and the
mean density is exactly conserved. To achieve this goal, two
modifications are introduced to our previous QLA:

(1) the initialization of the spinor is chosen to be q0 =
Re[ψ], q1 = i 	[ψ];

(2) the potential operator � is replaced by the nondiagonal
matrix

�N = e−iσxV 	t =
(

cos[V 	t] −i sin[V 	t]

−i sin[V 	t] cos[V 	t]

)
, (22)

such that
∑

γ (�Nq)γ = e−iV 	tψ in order to reproduce the GP
equation.

The QLA consists of three main components: collision,
streaming, and local phase rotation to introduce the potential.
It is clear that streaming does not alter the phase of q0 q1;
e.g., q0 q1 will remain purely imaginary. Since the collision
operator Ĉ is the

√
SWAP gate, then applying this collision

operation four times results in the identity operator

Ĉ4

(
a

ib

)
= Ĉ2

(
ib

a

)
=

(
a

ib

)
, (23)

where a and b are real. In actually applying the full QLA, we
note that the collide-stream unitary operators do not commute.
However, what is critical is that the streaming operator never
changes the phases of the spinor components so that

ĈŜ−1ĈŜĈŜ−1ĈŜ
(

a

ib

)
=

(
e

if

)
(24)

for some real e and f . Finally, the modified potential operator
�N does not alter the phase of either component of the spinor:

�N

(
a

ib

)
=

(
a cos[V 	t] + b sin[V 	t]

−ia sin[V 	t] + ib cos[V 	t]

)
. (25)

As a result, the averaged density

|ψ |2 = |e−iV 	t (a + ib)|2 = a2 + b2 (26)

is conserved exactly.

III. POINCARÉ RECURRENCE

To probe the Poincaré recurrence in the 2D GP system, we
introduce the time-averaged ratio of the internal energy to the
kinetic energy defined in Eq. (6) as

γ =
〈
EI (t)

EK (t)

〉
. (27)

We find that γ plays a crucial role in determining the existence
of short Poincaré recurrence times. Another useful quantity is
the density-weighted vorticity [12]:

ωq = (∇ × [
√

ρv]) · ez, (28)

with ρ and v being defined in Eq. (4). The two components of
ωq are

(i) (∇√
ρ) × v · ez, which reflects the variation of the

density near isolated vortex cores or near entangled vortices
(i.e., vortices that strongly interact with each other);

(ii)
√

ρ ∇ × v · ez = √
ρ � δ(r − r0), which pinpoints the

2D location of the vortices with their circulation �.
Another convenient way to visualize the vortices is to

identify the branch cuts and singularities in a phase plot of
the wave function ψ . In particular, at the location of a vortex
there will be a phase change of 2π per winding number, giving
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FIG. 3. (Color online) : Poincaré recurrence for vortices with winding number 1. The self-similar structure at t = 10 500 and t = 31 300 is
most notable in the vorticity distribution plot, which is caused by the symmetric distribution of the vortices mimicking the initial condition. At
t = 41 900, the amplitude |ψ | and vorticity ωq are nearly identical to the initial state. However, the phases of vortices undergo different shifts:
π/4 for counterclockwise-rotating vortices and −π/4 for clockwise-rotating vortices. Spatial grid, 5122.

the impression of a branch point and the consequent branch
cut. To reflect the variation in the total number of vortices, the
density-weighted enstrophy [12]

Z =
∫

dr |ωq |2 (29)

is also calculated in the simulation.
The color scheme for the distribution plots is “thermal”:

blue stands for the low values while red represents the high
values.

A. Vortices initially imbedded in a Gaussian BEC cloud

For the first set of numerical simulations, we assume an
initial wave function with vortices embedded in an inho-
mogeneous Gaussian BEC background. The total angular
momentum is chosen to be zero and periodic boundary
conditions are enforced. To satisfy these two constraints, the
total wave function is taken as the product of the vortex wave
functions:

∏
i ψi(r), where the wave function of each vortex

ψi takes the form

ψtot(r,0) = he−awgr
2

4∏
i=1

ψi(r − ri) (30a)

ψi = tanh(
√

a|r − ri |)e±in Arg(r−ri ). (30b)

|ψi(ri)| = 0 at the vortex core itself, n is the winding number,
and we first consider four vortices embedded in the Gaussian
background. h controls the wave function amplitude and a

can be viewed as a spatial rescaling parameter to resolve flow
structures in the turbulence. In Figs. 3 and 4 we show the initial
conditions for winding number n = 1 and winding number
n = 2. The parameters are h = 0.05, a = 0.01, wg = 0.01,
and g = 5.0. The distance between neighboring vortices is
L/4 for n = 1 and 2L/11 for n = 2 winding numbers. From
the vorticity and phase plot, the locations of the vortices
are immediately pinpointed. The blue dots in enstrophy
plots indicate clockwise-rotating vortices [white circles (upper
left and lower right) in phase plot Fig. 3(m)], while red
dots indicate counterclockwise rotating vortices [black circles
(upper right and lower left) in the same phase plot]. In essence
the winding number n = 2 vortex is a doubly degenerate
simple vortex, with phase change 4π . Grid size is 5122.

The energy ratio parameter γ = 0.018 for winding number
n = 1 vortices and γ = 0.0036 for winding number n = 2
vortices. The total energy is conserved to seven significant
digits in the simulation for 50 000 iterations.

For such low internal to kinetic energies, we find very
short Poincaré recurrence of the initial conditions. This is very
evident in the time evolution of the internal energy, cf. Fig. 1,
with the recurrence of the strong initial peak. Based on the time
evolution of internal energy, it is most instructive to examine

046701-5



BO ZHANG, GEORGE VAHALA, LINDA VAHALA, AND MIN SOE PHYSICAL REVIEW E 84, 046701 (2011)

FIG. 4. (Color online) Poincaré recurrence for winding number 2. The wave function evolves in a pattern similar to that of the n = 1 case.
At t ∼ 10 500 and t ∼ 31 300, a lattice of vortices is formed. At t ∼ 21 000, the wave function is restored to its initial distribution with a shifted
origin. At t = 41 900, the initial wave function is reproduced. However, more background noise is generated, such as the vortices with small
depth indicated by the small dots in plot (h). Spatial grid, 5122.

the spatial distribution of the wave function amplitude |ψtot|,
the density-weighted vorticity ωq , and the phase θ at times
t = 10 500, t = 21 000, t = 31 300, and t = 41 900, where
TP = 41 900 (Fig. 3). A regular lattice of vortices only occurs
at integer multiples of the half-Poincare time, mTP /2. For
example at t = 8000 (Fig. 2), no such self-similar structure
is seen. This is characteristic for all times away from integer
mTP /2. Of course, there is an overall four-quadrant symmetry
because of the intial symmetry which is faithfully preserved
by the QLA throughout the run.

At t = 10 500 and t = 31 300, 16 vortices are present
in a highly symmetric lattice pattern, which is simply a
fourfold version of the initial wave function. At t = 21 000,
the distribution of |ψtot| and ωq would be same as the
initial condition if the origin of the domain was shifted to
r0 → r0 + L/2ex + L/2ey , with L being the domain size. At
t = 41 900, the Poincaré recurrence period TP , the distribution
of both |ψ | and ωq closely approximates the initial state
except for some sound wave interference particularly near the
boundaries. In the spatial distribution of the phase information
θ there are phase shifts δ at the branch points and point
vortices at TP . In particular, one finds a phase shift of δ = π/4
for counterclockwise-rotating vortices while having a phase

shift δ = −π/4 for clockwise-rotating vortices, thus yielding
different branch cuts connecting the same branch points.

Initial vortices with winding number n = 2 are energeti-
cally unstable and rapidly split into two n = 1 vortices [16].
Therefore the Poincaré recurrence should now be viewed
as the reproduction of that state immediately following the
degenerate vortex splitting. To compare and contrast the
evolution of the initial winding number n = 2 vortices with the
dynamics of the Poincaré recurrence for vortices of winding
number n = 1, we again consider the dynamics at t = 10 500,
21 000, 31 300, and 41 900. Figure 4 illustrates the global
similarities and local differences with the case of winding
number n = 1 vortices (Fig. 3). Around t ∼ 10 500 and
t ∼ 31 300, a vortex lattice again is populated by 16 pairs of
vortices. At the semi-Poincaré period TP /2, the wave function
resembles the initial state but with the origin being shifted to
(L/2,L/2). It is amusing to point out that the Arnold cap map
also exhibits this initial condition point inversion symmetry at
TP /2 with full Poincare recurrence at TP —but only for certain
pixel resolutions [17]. For other pixel resolutions one does not
see this point inversion symmetry at TP /2. At the full Poincaré
period TP , one recovers the initial degenerate vortex split state
but with considerably higher background noise than for the
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FIG. 5. (Color online) Quantum Kelvin-Helmholtz instability
in a localized region on a 5122 grid. The plots depicts the phase
distribution at t = 10 500 and 10 600 for initial winding number
n = 2 vortices. The zoomed-in spatial domain is [−256, − 128] ×
[−128,128]. At t = 10 600, a pair of counter-rotating vortices are
generated between the neighboring vortices with the same rotation,
which can be identified by the new branch cuts identified by the black
arrows.

n = 1 winding number case. This increased noise level can
be attributed to the higher density of vortices.

We make a very interesting observation around t = 10 500
for the initial winding number n = 2 vortices: we find that
a pair of counter-rotating vortices are generated between
neighboring vortices with the same rotation (cf. Fig. 5). Now in
the spatial region between neighboring vortices with the same
sense of rotation, the flow undergoes strong shear. When this
shear becomes sufficiently strong and exceeds a critical value
new vortices are spun off by the quantum Kelvin-Helmholtz
(QKH) instability [11]. Our simulation confirms the recent
postulate [4,18] that the QKH instability can be one important
mechanism for quantum vortex generation.

B. Random-phase initial condition

We now consider an initial wave function with uniform
density ρ but with random phase θ , ψ = √

ρeıθ . The evolution

FIG. 6. (Color online) Bicubic fitted initial random phase θ (r,0)
on a 512 × 512 lattice, with m = 8. The range of the phase is [−π,π ],
and the first-order derivative of the interpolate is constructed to be
continuous.

FIG. 7. (Color online) Random-phase initial conditions.
(a) Evolution of the total energy ET (flat line atop), the kinetic energy
EK (upper middle), and the quantum energy EQ (lower middle).
(b) Evolution of the incompressible kinetic energy EIC (upper) and
compressible kinetic energy EC (lower). The spikes in energies
are unmistakably associated with the occurrence of short Poincaré
recurrence.

of such a wave function under the GP equation is energetically
unstable. Randomly distributed vortices are generated rapidly
to form turbulence. To generate the random phase throughout
the lattice domain, a bicubic interpolation [19] algorithm
is employed. In this interpolation the desired 2D function
f (x,y) is approximated by the polynomial p(x,y) defined on
a (normalized) unit square:

p(x,y) =
3∑

i=0

3∑
j=0

ai,j x
iyj . (31)

The 16 unknown coefficients ai,j are determined by enforcing
continuity at the four corners of the unit square. Typically,
the continuity conditions are chosen to ensure that f (x,y),
∂xf (x,y), ∂yf (x,y), and ∂x,yf (x,y) be continuous at these
four corners. This yields the required 16 equations to determine
the coefficients ai,j uniquely. Thus,
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FIG. 8. (Color online) Poincaré recurrence with random phase
as initial condition. Unlike our earlier case with initial quantum
vortices embedded in a Gaussian cloud, no vortex lattice formation
is observed at t = 10 500 (see Fig. 3). The vortices are randomly
distributed and resemble nothing like the initial (vortex-free) state. At
t = 21 000, the vortices are depleted from the system which now bears
some similarity with the initial condition. At t = 41 900, the vortices
disappear again and the global features approximate the initial state.

(i) discretize the domain into m × m unit squares (m
is known as the fragmentation level, with greater phase
fluctuations for higher m);

(ii) generate 4 pseudorandom numbers at each corner of the
unit square, giving 16 random numbers on the unit square;

(iii) compute the coefficients ai,j with the given 16 random
numbers;

(iv) periodicity is enforced by equating ai,j at the boundaries
of the domain.

A random phase initial condition, shown in Fig. 6, is thereby
constructed with m = 8 on a 512 × 512 domain.

To probe the occurrence of short Poincaré recurrence, we
perform a long-time integration of our QLA representation
of the GP equation to t = 100 000 such that the ratio of
internal energy to kinetic energy is γ = 0.002 87. In Fig. 7 we
show the evolution of the mean kinetic EK and quantum EQ

energies. (The total energy ET is conserved to ten significant
digits throughout the simulation.) In the time evolution of the
kinetic energy EK one sees strong spikes at t = 21 000, t =
41 900, t = 63 080, t = 83 980 . . ., with the spike amplitude
decreasing. The corresponding phase plots at t = 21 000 and
t = 41 900 are shown in Fig. 8.

At t = 10 500, which corresponds to TP /4 in Sec. III A, no
vortex lattice is observed. This can be explained by the fact
that the vortices are not symmetrically distributed initially (in
our current case there were no initial vortices). Somewhat
unexpectedly, the vortices in the system are totally absent

FIG. 9. (Color online) The distribution of the (both co- and
counter-rotating) vortices at times t = 20 600 and t = 20 800 before
their total (but momentary) disappearance at t = 21 000. At most
times in our simulation, the distribution of vortices resembles
that at t = 20 600: a large number of vortices randomly dis-
tributed throughout the whole domain. However, the number of
vortices rapidly tends to zero as t approaches the semi-Poincaré
period 21 000.

at t = 21 000, the semi-Poincaré period TP /2. A dramatic
decrease in the incompressible kinetic energy EIC is also
observed [cf. Fig. 7(b)]. At t = 41 900, the Poincaré period
TP , the phase distribution is globally restored to its initial
state (other than a global shift). Again, the vortices disappear
from the system with strong dips in the incompressible kinetic
energy EIC. The decrease in the EK spikes can be attributed
to the loss of fine local structure in the phase θ (r). In other
instances, we observe randomly distributed vortices upon
which the QT is developed. Figure 9 illustrates the vortices’
distribution between t = 20 600 and t = 20 800, right before
their total disappearance at t = 21 000. At t = 20 600, a
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FIG. 10. (Color online) Loss of Poincaré recurrence as γ increases, random-phase initial condition. The grid size is 512 × 512 for this
simulation, maximum iteration time is 50 000. The sharp drop of enstrophy in plot (c) indicates the depletion of vortices from the system,
which happens around t ∼ 21 000, the semi-Poincaré period.

large number of randomly distributed vortices can be clearly
detected, which characterizes the 2D QT. At t = 20 800 the
number of vortices is sharply reduced.

C. Loss of short Poincaré recurrence

Short Poincaré recurrence times occur when the ratio of
internal energy to kinetic energy is very small: γ ∼ O[10−2].

FIG. 11. (Color online) The slopes of incompressible energy spectra. The fitting range for sic is k ∈ [50,100]. The red line (flat line at
top) indicates sic = −3. The time-averaged slopes are sic =-3.23 for n = 1 and sic = −3.09 for n = 2. The variation of sic(t) for n = 1 is
characterized by irregular decrease of sic, such as the slope near t = 24 500.
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FIG. 12. (Color online) Irregular incompressible kinetic energy spectrum for n = 1. Fitting wave number range, k ∈ [50,100]. The spectral
exponents are (a) sic = −3.005, (b) sic = −5.828, and (c) sic = −3.357. The kink (black circle) in plot (b) suggests sudden changes in the
incompressible energy at small spatial scales.

However, as this ratio increases, the effects of the short
Poincaré recurrence are weakened. With the random-phase
initial condition, our simulations show that for γ ∼ O[10−1],
the short Poincaré recurrence can no longer be observed.
For t > 0, many randomly distributed quantum vortices are
formed. As can be seen from Fig. 10, when γ = 0.0567, there
is a strong depletion of vortices at TP /2 as the state returns
toward its initial state of no vortices (see also the strong dip
in the enstrophy). However, there are no such signatures in
the energies and enstrophy at TP . As γ increases to 0.133, no
depletion of vortices can be observed, which signals the loss
of short Poincaré recurrence.

IV. ENERGY SPECTRA OF 2D QUANTUM TURBULENCE

To study the energy spectra, Eq. (9), in 2D QT, we first
consider the vortex initial conditions of Sec. III A. For a 50 000-
iteration run on a 5122 grid, the spectra of incompressible and
compressible kinetic energy are sampled every 100 iterations.
If the energy spectra ε(k) in Eq. (9) follow a power law,
ε(k) ∝ k−α , then the exponent α is immediately retrieved
from ∂log(k) log[ε]. Figure 11 displays the time variation of
the incompressible spectral exponent sic for two sets of initial
conditions: (a) winding number n = 1 vortices and (b) winding
number n = 2 vortices. The red horizontal line corresponds to
a k−3 spectrum.

To understand the frequent appearance of very large spectral
exponents for vortices with winding number n = 1, we
consider the spectrum around t ∼ 24 500. From Fig. 12, it

can be readily seen that the incompressible energy spectrum
undergoes rapid change at very small spatial scales (i.e., at
large k). This irregularity is also demonstrated by the phase
plots θ (r) at t = 24 400, 24 500, and 24 600 in Fig. 13. One
can readily see that it is the disappearance of vortices which
is a major cause for the discontinuities in the incompressible
energy spectrum.

However, with winding number n = 2 vortices, the irregular
variations in sic are abated, (cf. Fig. 11). This could be
explained by the presence of the larger number of vortices
in the system. With the number of vortices doubled, it is easier
to reach a local critical velocity of counter flows to generate
new pairs of vortices; i.e., QKH occurs more frequently. Hence
the probability of all the vortices being annihilated from the
system is extremely low. This is not dissimilar to what has
been observed in 3D QT [17].

Following Ref. [8], we now examine the effect of random-
phase initial condition to probe the cascades of 2D QT by
performing simulations on 32 7682 spatial grids with initial
fragmentation level into blocks of 256 × 256. The total energy
is conserved to six significant digits for 15 000 iterations. The
parameters in this simulation are the following:

coupling constant, g = 1.0;

initial amplitude, |ψ(t = 0)| = 1.0;

coherence length, ξ = 1√
g|ψ(t = 0)|2

= 1.0;

spatial resolution, 	x = 0.03;

FIG. 13. (Color online) Phase evolution θ (r,t) for 24 400 < t < 24 600. The lower panel zooms into a center-left part of the domain.
At t = 24 500 (e), no branch cut can be observed (indicating no vortices present). At t = 24 400 (d), six vortices can be identified, while at
t = 24 600 (f), there are four vortices.
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temporal resolution, a = 	x2 = 0.0009;

size of system, Ls = 32 768 × 	x = 983.04ξ.

Here we identify coherence length ξ as is usually done in
the literature, even though it is strictly defined only for small
perturbations of an isolated vortex [16] for a specific boundary
value problem.

For a 15 000-iteration run, the ratio between internal energy
and kinetic energy is γ = 1.55. The time evolutions of the total
(ET ), kinetic (EK ), quantum (EQ), internal (EI ) energy, and

FIG. 14. (Color online) Evolution of energies for random initial
condition. (a) Evolution of kinetic energy EK (second lowest),
quantum energy EQ (lowest), internal energy EI (third lowest), and
total energy ET (uppermost). (b) Exchange between incompressible
kinetic energy [red line (lower)] and compressible kinetic energy
[blue line (upper)]. (c) Evolution of density-weighted enstrophy Z.
Grid, 32 7682.

enstrophy (Z) are shown in Fig. 14. These time evolutions are
not dissimilar to those presented by the authors of Ref. [8]
with their set of random initial phases. The dynamics can be
categorized into two broad stages besides the usual vortex-
vortex interactions of QT.

(i) Rapid generation of vortices. Since the initial wave
function with random phase is very unstable (because of
strong velocity field variations arising from v ∼ ∇θ ), a large
number of vortices are rapidly generated. This generation of
vortices causes the originally homogeneous amplitude

√
ρ

to fluctuate, which results in rapid increase in the internal
energy and quantum energy. Concurrently, the incompressible
energy increases rapidly. Provided that the enstrophy also
increases rapidly at this stage, we conjecture that the increase
of incompressible energy is mainly due to the generation of
vortices in the system.

(ii) Depletion of vortices. In this stage the major energy
exchange is the energy transfer from vortices to elementary
excitations, such as long-range sound waves. This can be
confirmed from the decrease of the incompressible kinetic
energy with a corresponding increase in the compressible
energy with the total kinetic energy remaining constant (cf.
Fig. 14).

At iteration step t > 3000 (i.e., 0.3 on the figure axis
with units of 10−4), the only major energy exchange is
between incompressible and compressible energy. We focus
on iteration steps t ∈ [4000,8000] to examine the spectra.
Figure 15 depicts the energy spectra at t = 8000 for both
compressible and incompressible energy. The incompressible
energy spectra can be broadly categorized into four regions:
(I) k � 0.01kξ , (II) 0.01kξ � k � 0.1kξ , (III) 0.1kξ � k � kξ ,
and (IV) kξ � k. The separation between (I) and (II) is signaled
by the sudden drop of compressible energy at k ∼ 15 (the
small dip encircled in Fig. 15). The regression fit of the
incompressible energy spectrum is illustrated in Fig. 16. The
variation of energy spectra is continuous in different regions
and no bottleneck effects are observed. It is interesting to notice

FIG. 15. (Color online) Spectra for incompressible [red (lower
line)] and compressible [blue (upper line)] kinetic energy at t = 8000.
The unit of momentum k is ku = 2π/Ls , with Ls = 983.04ξ . The
black dashed line indicates the position of kξ = 2π/ξ . The circle
emphasizes the dip in the compressible energy which seems to
propagate with time to smaller k like a backward propagating pulse.
Grid, 32 7682.
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FIG. 16. (Color online) Regression fits to the incompressible
kinetic energy spectrum k+α for various wave number windows. (a)
Region I, α = +2.34 for 1 < k < 15; Region II, α = +0.65 for 20 <

k < 100. (b) Region II, α = +0.65 for 50 < k < 100; Region III, α =
−4.17 for 600 < k < 1000. (c) Region III, α = −4.23 for 700 < k <

1200; Region IV, α = −3.03 for 4000 < k < 5000. Grid, 32 7682.

that around k ∼ kξ , the incompressible energy slope α is close
to −4.0 and persists for a time interval 3000 < t < 14 000
during which the randomly distributed vortices dissipate
away.

To further examine the incompressible energy spectra
near k ∼ kξ , we sample the incompressible energy spectra

every 50 iteration steps between 6000 < t < 10 000 within
the wave number window k ∈ [800,1200]. The time-averaged
slope 〈α〉 = −4.145 ± 0.066. This is in good agreement with
Saffman’s k−4 power law observed in Horng et al. [12].
However, we do not observe any inverse energy cascade for
k < kξ .

V. CONCLUSION

We have investigated 2D QT using a novel unitary QLA.
The unitarity of the quantum algorithm makes it an efficient
method for simulating the dynamics of the GP system which
demands the conservation of the number of particles and total
energy. The local collision and streaming operation enables
the QLA to be parallelized almost ideally. The superlinear
parallelization of the QLA allows us to probe the energy
cascades with large grid simulation, such as 32 7682.

The spectra analysis of the incompressible kinetic energy
reveals a ubiquitous k−3 power law for large k > kξ . This
power law, in 2D QT, may possibly be attributed to the result
of Fourier transform of the topological singularities (and so
may possibly be used to identify vortices in the 2D GP
system). However, there is still substantial sound waves at
these very small scales due to the presence of a compressible
kinetic energy spectrum which overlays the incompressible
spectrum for k > kξ . At k ∼ kξ , a k−4 power law is observed,
not dissimilar to that found by Horng et al. [12] who then
connect this to the Saffman k−4 spectrum in CT. However,
no inverse energy cascade is observed in our simulation.
This may attribute to the compressibility of the GP system
and the fluctuation of enstrophy. During the simulations, we
discovered an unexpected short Poincaré recurrence provided
that the ratio of internal energy to kinetic energy γ � O[10−2].
When γ increases to the order of O[10−1], this short Poincaré
recurrence is no longer observed.
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