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Turbulence modeling of the toroidal wall heat load due to shear flows
over cavities in the neutral gas blanket divertor regime
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(Received 13 May 1997; accepted 4 August 1997

Heat loads to the target plate in reactor tokamaks are estimated to be orders of magnitude higher
than those that can be withstood by known materials. In regimes of plasma detachment, there is
strong evidence that plasma recombination occurs near the divertor plate, leading to a cold neutral
gas blanket. Because of the strong coupling between the plasma and the neutrals within the divertor
region, there is significant neutral flows along field lines up to Mach 1.2 and Reynolds numbers over
1000. Here the effects of three dimensiof@D) neutral turbulence within the gas blanket on heat
deposition to the toroidal wall are examined. Both two dimensi¢BB) mean shear flows over
toroidal cavities as well as a fully 3D initial value problem of heat pulse propagation are considered.
The results for algebraic stress modéke and laminar flows are compared. It is found that 3D
velocity shear turbulence has profound effects on the heat loads, indicating that gimgde
Reynolds stress closure schemes are inadequatel9%F American Institute of Physics.
[S1070-664X97)01311-6

I. INTRODUCTION tribution of the heat flux onto the toroidal side walls and

tokamaks are a major cause of concewthile the idea of a phisticated turbulence closure models but to initiate an inves-

gas blanket itself is quite ofcaind the possible role of plasma tigation of the effect of 3D mean shear flows on the wall heat
turbulence and plasma neutralization in wall plasma physic§oadS
has been recently reviewéglasma recombinatidrhas now Tr.1ere are three basic simulation technidées fluid
been shown to play an important role n the formation of &urbulence: direct numerical simulatioBNS), large eddy
cold neutral gas blanket between the divertor plate and thgimulations (LES), and Reynolds-averaged navier stokes
plasma flame front in the scrape-off lay&OL). Previously, ' y 9

not much attention had been given to plasma recombinatioﬁRANsi' ia(l:h metthc:ﬁ hasd.|ts strgngths anddlll?jnayor:ls be-
processes since they can only play a major role in regime_g.ause urbulence Is three imensiot@D) and intrinsically
where the temperatures are on the order of 1 eV. To explaiWVOlves disturbances on all length scales. DNS resolves all

the recent experimental results on the so-called detached dirPulent scales: from the large scale eddies down to the
vertor regimé (in which the plasma essentially extinguishesdISSIpatIon range eddies without any approximations. As a

itself near the divertor plajerecent plasma divertor modéls "esult, DNS is limited to low Reynolds number turbulence
required plasma temperatures around 1 eV near the diverté"d Simple geometry due to the limitations of computer
plate. Moreover, such low plasma-divertor temperaturegnemory and speed. While the Reynolds number for our di-
have been verified experimentdlland the role of plasma Vvertor problem is quite low, the geometry is quite complex
recombination in observed plasma detachment has been r@d cannot be readily handled by DNS on present or fore-
cently reviewed seeable computer architectures. In LES, a suitable grid is
With plasma recombination and neutral gas ionizationchosen that allows one to resolve the large eddies but forces
within the divertor region, there is strong coupling betweenone to model the smaller scale structures and their interac-
the plasma dynamics and neutral fluid fléwSince the tions with the large scale eddies. One of the advantages
plasma flows principally along the magnetic field, the neutragained in LES is that the small scale turbulence tends to be
flow will also be along the field lines—and in recent two isotropic and thus lend themselves to easier modeling. While
dimensional(2D) laminar simulation$for coupled plasma- this increases the range of geometric flows that can be
neutral flows, this neutral gas velocity can readily exceedandled and somewhat increases the range of Reynolds num-
Mach 1, with Reynolds numbers of the order of 1000. Nowber, LES is found to be only factors of 58 faster than DNS.
recent fluid experimentave succeeded in triggering turbu- The other problem facing both DNS and LES is the need to
lence in channel flow at Reynolds numbers as low as 650 bgbtain a sufficiently large sampling of the flow statistics—
using eddy promoters. Turbulence in the cold gas blankeg¢specially for inhomogeneous flows.
will lead to enhanced heat removal and more efficient redis- Here, we apply RANS to compressible turbulence. In
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RANS, all the turbulent scales are time averaged over an The RANS equations for the evolution of density, mo-
interval short compared to mean flow time variations. All thementum and energy are

turbulence effects on the mean flow are modeled—Ileading to

somewhat complex turbulence models since one is no (p)+ (<p>«u »)=0 (5)
modeling even the large turbulent scales. The averaged m@!

mentum equation is not closed because of the presence of th 9

Reynolds stress tensay; . The simplest two-equation mod- — ((p)«u; »)+ — (<p>«u »«<U,»+(p)dia)

els determine equations for the turbulent kinetic engfgy Jt

=1/2 Trr and the turbulent dissipation rate If a simple Ho J _
. .. ) _ O\Oiq P)Tia
gradient transport hypothesis is imposed on the off-diagonal = - (6)
. . - X X
Reynolds stress tensar;, the Boussinesdlinear in the @ “«

mean flow gradienjsapproximation is obtained. We shall 4 J

call the resulting RANS model ttié-e model, and it was this =+ ((p)«E») + =~ [«Us»((p)«E>+(p))]

K-e model that wé® considered in our earlier 2D mean flow *

calculations of heat deposition for various toroidal cavity d ,

geometries. However, more sophisticated closure schemes :E<0-a3>«ua»_<qa>)+x(<Uaﬂ><uﬁ>

for the Reynolds stress tensor have been developed. We shall

consider one of these schemes called algebraic stress model — + (o guz) —(p)«<E"u;»), (7

(ASM). In the ASM, the 7;; elements are modeled with

higher order(nonlinear in the mean flow gradientsorrec-

tions to the Boussinesq approximation. au, au; A,
In Sec. Il, we briefly state th&-e and ASM equations (oi)=—3\r 5 ax,, | i M(W ﬁ_x)>

and refer the reader to the literattfrdor more details. In . '

Sec. I, we revisit the problem of 2D mean flow over toroi- aT

dal cavities and compare th€-e and ASM results for the (a))= < &x|> ©

steady state toroidal wall heat deposition. In Sec. IV, we set

up the problem for 3D mean flow over toroidal cavities— is the viscosity andk the thermal conductivity. The Favre-

where we now not only consider the toroidal flow but now @veraged total energy

include the poloidal flow towards the divertor plate as well. 1 1, ,

Heat depositions to the toroidal wall are again calculated for «E»=c,«T»+ E«UQ»«UQ»Jr E«u“u“» (10

both theK-e and ASM closures for the initial value problem

of a heat pulse propagating towards the divertor plate. Thés employed so that shock-capturing techniques can be effi-

time evolution of these heat deposition profiles are also coneiently coded into the numerical algorithm. Throughout this

trasted to those determined from laminar 3D mean flows. Warticle, the summation convention is used for repeated

briefly discuss the numerical code in Sec. V and summarizeubscripts—which are typically written with Greek charac-

our results in Sec. VI. ters. The equation of state is

where the mean viscous stress tensor and heat flux are

®

1
(pY=(y—1){(p)| «E»— z«u»?—K |, (11
Il. RANS CLOSURE MODELS 2
Wwherey is the ratio of specific heats.
While the density Eq(5) is form invariant under RANS,
there are closure questions due to the last terms in the RANS

In RANS, one introduces time averages over turbulen
fluctuations on some functiof(x,t) by

1 (7 ions: - -
(fy== f dtf(x.1), 1) momentum and energy equations: the Favre-averaged Rey
T Jo nolds stress tensor
whereT is a time interval long on the turbulent fluctuation —«u”u”» (12

time scales, but short on the mean-flow time scale. Thigs
decomposed into a Reynolds-average mééh and the
Reynolds-averaged fluctuatidn: <p>((E"ui”)):Cv<p>«ui”T"»—|—<p>«ua»7’ia

f(x,t)y=(f)+f’ 2

Since we will be dealing with compressible flows, it is very
convenient to introduce density-weighted Reynolds averages
(called Favre averag)é@

and the energy-velocity fluctuation correlation

- <p>«u//unu//» (13)

While an evolution equation can be derived for the Rey-
nolds stress tensor, such second-order closure schemes re-
(pf) quire the modeling of many unknown turbulent quantities.
<fs=-- 3 '
( ) Moreover, such schemes are not only computationally ex-
. . . nsiv re pron numerical in iliti h
wherep is the density. The Favre fluctuations are pensive but are prone to numerica stabilities due to the
absence of a turbulent viscosity. A more robust closure
f(x,t)=«f»+f". (4) scheme is the two-equation model in which one determines
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the time evolution of the turbulent kinetic ener@yhich is 3(1+79)+0.2n%+¢% K2

nothing but the trace of the Reynolds stress tensor () =(p)as 31 71 6728 68 P € (20)
1 .
K=% Tu (14 With
, aK? , asK?
(with the usual summation over repeated Greek subsgripts 7 =~ 2 SapSaps €7 2 WapWap- (22)

and the turbulent dissipation rate i
The mean rate of strain tensor

,
E=<oaﬁ —>- 19 I )
Mg S”_Z IXj * X (22
These transport equations are

(p)K) | 2((p) <t K)

and the mean vorticity tensor

)
ot X, Wij_i 5_)(] - (?_XI (23
= —(p)Tup ‘9<(u“))_<p>e+i (MJ,_ <'“T'->) x while the a-constants a;=(4—3C,)g/6, a,=(2
IXp MXa Tk '?X“(:LG) —C3)?0%/4, az3=(2—C,)?g%/4, a,=(2—C,)g/2, as=(2

—Cj)g, with g=2/(C;+2C5—2). TheC constants are de-
and termined from the pressure-strain-correlation mddeC,
=6.8, C,=0.36, C3=1.25, C,=0.40, andC5=1.88. Fi-
I(p)e) + I(p)«Us>€) nally, the transport coefficients arg.=1.0, o.=0.16/(C.2
at IXg —C.)C, " with C.1=1.44 andC .=1.83.
c PRI 2 The f function in (17)

€
=—(P)Ca g Tap Tﬁ‘(f))Cezf e p( y+)
1—-ex “5E

(urL)| de . : L ccinafi
mt— - 17 is introduced to remove the singularity in the dissipation rate

o X
“ equation at the wally™ is a dimensionless coordinate per-
where u is the molecular viscosity, anfur. ) is the eddy  pendicular to the wall

viscosity with corrections for the logarithmic layer near the

2

f= (29

]
+ —_
X

€

U,
wall yr="2Y (25
K2 #
(mr)=Cup) —» Wwith C, =0.081 (18 whereU,=(uduldy|,a) Y2 is the friction velocity.

and the functiorf is introduced to remove the singularity at
the wall. A critical issue is the modeling of the Reynolds
stress tensor;; . Since second-order closure models are de-  The simplerK-e model utilizes a Boussinesq, gradient
duced on stronger theoretical grounds than the lower levéransport closure for the Reynolds stress telsor
models, they can be used to derive better two-equation mod- 2

els as in the algebraic stress modalSM).**'°> We shall (p)Tij~§ (pYK 8 —2(prL) <<s,J»—§«Sw»5ij),
compare the ASM with the simpler gradient transport closure

model which we shall call here th€-e model.

B. K-€ turbulence model

(26)

C. Laminar model

A. Algebraic stress model (ASM) The Iammar_ model is immediately obtained by setting to
zero all fluctuations.
Using the ide® of a tensorial polynomial expansion for

obtaining explicit algebraic stress, one can obtain the follow—III STEADY STATE 2D MEAN FLOWS OVER
ing nonlinear representatith TOROIDAL CAVITIES

(Si' _ E S 5__) We consider flow parameters suggested by detached di-
b3 el vertor plasma laminar 2D simulatichand perform steady
K state simulations for 2D mean toroidal cavity flow at Rey-
it (SaW,yj+ S Wai) nolds number Re 750, withx in the toroidal direction angt
€ in the radial direction(see Fig. 1 The inflow condition at
x=0 has a sharp radial temperature profilex=0,y), Fig.
(19  2(a), with T,,,=1.3 eV andT,,,=0.025eV. Atx=0, the
inflow radial pressure profile is Gaussian wijth=1 Torr
but here we use the near wall eddy viscosity coeffiéfent  at toroidal Mach number 1.2. For convenience, we represent

<p>7ij:§<p>K5ij_2<MT>

a5K

€

1
( SiaSaj - § Saﬁsaﬁaij )
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heat load to toroidal wall

" 110
ASM K-¢
! 10° ¢ \s\ 4102
| X % + "'?9??9
000 L o & e e e e e e e e m e e e e N
0 i 2 3 - ) 4 WHH—HJr;g 10-3
© lam
=
I 3 "
R 210°
FIG. 1. 2D toroidal cavity geometry, wheres the toroidal ang the radial
direction. 1 L 10°
. 2 2.5 3
@) x
the velocity profiles in Fig. 2 for the full 3D mean flow Heat Load at x = 0
case—for 2D mean flows one simply sets the poloidal mo- 010"  2510"  510*  7510%  110°
mentum to zeropw=0. The inflow turbulent profilep K 078 ! ' ! '
andp e are taken from simulation ddfsfor channel flow and Y
. . . . 0.7 5e
are shown in Fig. @). The symmetry line igy=0, and the e o,
toroidal wall is located ay=0.5[except in the cavity region o5 o
where the toroidal wall is ag=0.75]. TRV %
The heat transfer coefficient to the toroidal walls are Y o6Lt . o K-e
. . . . . - + . o
shown in Figs. 3, with the laminar heat flux always being T OeAM o
less than that for the turbulent models. The ASM wall heat 055 F, Y R
flux is greater than that for thi€-e model before the cavity, Zﬁ ‘ % G
0<x<1, but theK-¢ flux is greater within the cavity, €x 05 0**++":.-74- . jo G or »
<2, and after the cavity 2x<3. However, the ratio of () 010" 25107 5107 75100 110
these turbulent fluxes is on the order of 1 to 2. The heat flux heat load at x = 1
0 10° 2510°  510°  7510°  110%
075 L L] L 1
)
0.75%%
:— -. OO
y + o o
O
065+ °
+e o
y Lo © K-¢
06r. o
% ASM °
0550 & e, “o
(@) Blme e To oC"
0.5 . .th:;‘l‘ﬂ-%l. ...'Ft-. ) T ..<l>
() 0 10° 2510°  510° 7.5 10° 1107
FIG. 3. Heat flux coefficients to the toroidal walls for ASM-¢, and
y laminar flows:(a) toroidal wall 0<x<1, y=0.5; 1<x<2, y=0.75; 2<x
<3,y=0.5; (b) leading cavity edge at=1, 0.5<y<0.75; and(c) trailing
cavity edge ak=2, 0.5<y<0.75.
to the trailing edgdat x=2) is typically an order of magni-
tude greater than that at the leading eéaex=1), Fig. 3b)
and 3c). This is to be expected because of flow patterns with
(b) o 0.1 0.2 0.3 0.4 0.5 the cavity itself.

FIG. 2. (a) The inflow radial profiles ak=0 for the temperatur& and the
toroidal momentumpu. y=0 is the symmetry line whiley=0.5 is the

poloidal flow pw=0. For 3D mean flows, while there is no net poloidal

The corresponding radial temperature profiles are shown
in Fig. 4 for three toroidal locations: just before the cavity
(x=0.9), within the cavity x=1.5), and after the cavity

location of the toroidal wall. Of course, for 2D mean flows, there is no (X=2.6). The profiles are shown from the radial symmetry

momentum, there is poloidal inflow towards the divertor plate<{0
<0.375) and poloidal outflow (0.3%5y<0.5). (b) The inflow turbulent

radial profilesp € andp K.

Phys. Plasmas, Vol. 4, No. 11, November 1997

line (y=0) to the toroidal wall(y=0.5 for x=0.9 andx
=2.6, andy=0.75 forx=1.5). Before the cavity, &x<1,
Tmax IS less for the ASM while there is little difference be-

Vahala, Vahala, and Morrison 3995



Temperature Profile { x = 0.9)

0 0.2 0.4 0.6 0.8 1
0.5y } i } } i

x| 20 1.0 0 -1.0
0.5

-10.75

Y 1 8 3

y
0.75

FIG. 5. The 3D toroidal cavity geometry, whereis the toroidal,y the
radial, andz the poloidal directions. The divertor plate iszt 0. The input
profiles are az=1.

(a) 0 0.2 0.4 0.6 0.8 1

Temperature Profile (x = 1.5)

However, in the ASM this shear layer in the flow bordering
the cavity region is quite diffuse because of the effects of the
nonlinear strain/vorticity terms.

Because there is little turbulence within the cavity, one
finds within the cavity little differences between the ASM,
K-e and laminar viscosities. Away from the walls, there is a
substantial difference between the ASM afek viscosities
because of the effects of the mean rate of strain and vorticity,
effects that are not present in the definition of the eddy vis-
cosity in theK-e model[ compare(18) with (20)]. The ef-
fects of shear are more pronounced after the flow passes over
: the leading edge of the cavity, resulting in an increased ASM
(b) 0 01 02 03 04 05 06 0.7 eddy viscosity. The eddy viscosity for tie e model is quite
high, even before the cavity, and is considerably reduced in
the postcavity region. One should note that the effects of
0 64 02 03 04 05 06 07 turbulent viscosity on the Reynolds stress, (19) and(26),

‘ 1 are very different between ASM arit-e.

0.625
¥y 0.5
0.375+4

0.254

0.125+

Temperature Profile ( x = 2.6)

IV. INITIAL VALUE 3D MEAN SHEAR FLOWS OVER
TOROIDAL CAVITIES

We now turn to the case of 3D mean shear flow over
toroidal cavities. The geometry is shown in Fig. 5. Again,
y=0 is the symmetry plane=0 is the divertor plate. We
label the toroidal wall region as follows:

region 3. y=0.5, —1<x<0, 0<z<1,

region 4: y=0.5, 0<x<1, 0.75<z<1,

(©) 0 01 02 03 04 05 06 07 region 1: y=0.5, 1<x<2, 0<z<1,

FIG. 4. The radial temperature profilég) before the cavityx=0.9; (b) region 8: y=0.75, O<x<1, 0<z<0.75.

within the cavity,x=1.5 where now 8y<0.75; (c) after the cavityx  \We consider an initial value problem, with the inflow pro-

=26 files atz=1 as shown in Fig. 2. Not only is there now a
toroidal (pu) flow of 1.2 Mach number, but also a poloidal

tween theK-e and laminar profiles. Note that the ASM tem- flow p w towards the divertor plate of Mach 0.2 so chosen

perature profile has no inflection point as do #ee and that there is no net momentum flux to the divertor plate:

laminar profiles. Within the cavity and after the cavity, the 0.5

K-e and ASM profiles are quite similar. One finds in tee dypw=0. 27

model, for the flow bordering the cavity region<k<2, 0

sharp variations in the turbulent dissipation rate around  Periodicity is imposed in the toroidal directigr=—1 and

y=0.5 where one finds a very tight steady state shear layek=1).

3996 Phys. Plasmas, Vol. 4, No. 11, November 1997 Vahala, Vahala, and Morrison



asm. 19. 3 [peak = 2056] asm. 19. 1 {peak = 2045]
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FIG. 6. The heat flux coefficient to that section of the toroidal wall with FIG. 7. The heat flux coefficient to that section of the toroidal wall with 1
—1<x<0 when the heat pulse, which is propagating towards the divertor<x<2 when the heat pulse, which is propagating towards the divertor plate
plate z=0, is atz=0.4. Note the difference in th€, scales betweefa) z=0, is atz=0.4. Note the difference in th@,, scales betweefa) ASM, (b)
ASM, (b) K-¢, and(c) laminar flows, as well as the considerable ASM heat K-¢, and(c) laminar flows, as well as the considerable ASM heat flux in the
flux in the wake of the heat pulse. wake of the heat pulse.

In what follows, we shall examine the heat flux coeffi- the tail of the heat front 06z<<1.0. However, in the ASM
cient Cy(x,z) to the toroidal wall as the heat pulse propa- model, the wall heat flux in the tail region of the heat pulse
gates towards the divertor plates- 0. We find very signifi-  remains high—a factor of three greater than the peak of the
cant differences between all 3 models: the turbulent ASMwall flux for the K-e model. This effect is very evident in
K-¢, and laminar flows. When the heat pulse is located at region 4, Fig. 8, which is in the tail of the heat pulse. These
~0.4, the corresponding heat flux coeffici€i(x,z) to the  major differences between the ASM and-e turbulence
toroidal wall is plotted in Figs. 6—8 for regions 3, 1, and 4. models arise because of the nonlinear effect of the quadratic
One notes there is little difference in the toroidal wall heatmean vorticity and/or velocity strain tensofsf (19) and
flux to regions 3(Fig. 6) and 1(Fig. 7). As expected, the (20)]—effects which are enhanced by the cavity region. The
maximum inCy, occurs atz=0.4 but the peak in the turbu- cavity region also has a profound effect on tbgin region
lent ASM model is nearly a factor of four greater than in the8. When the heat pulse is 2t 0.4, there is negligible toroi-
turbulentK-e model while nearly a factor of ten greater than dal heat flux to the cavity floor.
for laminar flow. In theK-e and laminar cases, the toroidal Similar full toroidal wall heat fluxCy, (for ASM, K-¢,
wall heat flux coefficients are quite localized, with~0 in  and laminar flowsresults are shown in Fig. 9 when the pulse

Phys. Plasmas, Vol. 4, No. 11, November 1997 Vahala, Vahala, and Morrison 3997



asm. 19. 4 [peak = 1575]
1600

1500
1400
1300

1.00

K-~
0.75 ‘,Ij,,-?? '/// 1500

bl

0.00

. 050 1400 R \\\ \
0.25 1300 ‘\\\\\\\{\\{{\\\\&‘:‘H“|||‘i ‘\\\\\\\\\}\\\\

1.00 0.95 0.90 0.85 0.80 0.75

(a)

turb. 15. 4 [peak = 74]

(b)

lam . 18. 4 [peak = 18]

FIG. 8. The heat flux coefficient to the<x<<1, 0.75<z<1 section of the
toroidal wall in the wake of the heat pulse locatedzat0.4. Note the
difference in theCy, scales betweeifa) ASM, (b) K-¢, and (c) laminar
flows. The ASMC, is over a factor of 20 greater than thee C,,.

is atz=0.15. There is now some heat flux to the cavity floor,
but this flux (in all three modelsis delayed till z=0.4.
Again, one sees the long wall heat flux in turbulent ASM
model in the tail behind the pulse.

()

V. NUMERICAL CODE IsAAC . . .
FIG. 9. The full toroidal heat flux coefficients when the heat pulse & at

We now briefly comment on the coffeisaac (Inte-  =0.15.(@) ASM, (b) K-¢, and(c) laminar.
grated Solution Algorithm for Arbitrary Configurationshe
equations to be solved are written in the form of inviscid
(convective fluxes, viscous(diffusive) fluxes, and source capturing, good accuracy, and general geometric capabilities.
terms. In the finite-volume discretization, the particularA Roe approximate Riemann solver is coupled with a
scheme used depends on how one approximates the interfaddUSCL) scheme to achieve second-order spatial accuracy
flux of the computational cell bounding the cell-averagedfor the inviscid terms. Consistent with the elliptic nature of
guantities.ISAAC was written with the goal of good shock the diffusive fluxes, a finite-volume representation of a
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second-order accurate central-difference operator is enm . 19 3 (v peak = 0.55]
ployed. The source terms are treated as an integral over tt
control volume. To accommodate geometrically complex
configurations, a multiblock procedure is implemented tha

require.sCOI grid continuity. InISAAC, one employ; a first- i “““

order implicit scheme for steady-state simulations and ¢ v ' gl"{"{‘.'\“‘.l%‘l‘.!‘.l“‘l‘l}:‘ém
second-order implicit scheme for time-dependent simula : e
tions. The algorithm has been validated on both 2D and 3L RSN
mean flows. In our steady state runs, convergence we | , -o “::‘._“'

deemed to have been reached when the residuals hi \a
dropped by at least four orders of magnitude, while for the

time-dependent runs the residuals are checked during tr
time subiterations.

The code has been benchmarked against experiment
data on subsonic and supersonic boundary layers, supersol
mixing layers, supersonic flow past ramps up to deflectior 04 ]
angles of 24°, and transonic airfoils by comparing the pres
sure, mean velocities, skin friction as well as turbulent
statistics'>?%2! |n the 2D simulations, the regular channel
0<x<3, 0<y<0.5 grid was 12X 101 while in the cavity _ S
region (1<x<2, 0.5<y<0.75), the grid was 4k41. One A ‘,“
iteration takes approximatell s on theJ90, with approxi- 3
mately 70 K iterations to reach steady state. For the 3L
simulations, in the regular 3D volumé-1<x2, 0<y
<0.5, 0<z<1) the numerical grid was 64101x 81, with a 100 080 060 040 020 o000
21X21X61 grid in the cavity volume(0<x<1, 0.5<y “
<0.75. Typical storage requirements were 120 MW, and
one iteration takes approximately 18 min.

Finally, we comment on the numerical accuracy of ourF!G. 10. Plots ofy/+ f_or ASM when the heat pulse is locatedzt 0.4 for
results. In Fig. 10, for regions 3 and 1, the surface plot of the 9'°"® $and Lin Fig. 5.
dimensionless coordinatg*, (25), is shown for the ASM

model eren the heat pulse is 2&0.4. For nearly all the heat load as a heat pulse propagates along field lines towards
surface,y” <0.2—except in the regior~0 andx~1 near the divertor plate? We find very significant increases to the
the pulse leading edge{-0.4). This is somewhat expected toroidal heat flux due to the quadratically nonlinear terms in

since the start of the cavity domain isxat 0 and the end of mean shear and mean vorticity of the ASM over the simpler
the cavity domain isc=1. Past calculations have shown that k. ¢ turbulence model—especially in the wake of the heat

this resolution_ is sufficient to resolve bot_h velocity and tem-p1Ise—due to the toroidal cavities.
perature gradients in the near-wall region so that the wall  \ye do not present any results for the heat flux to the

heat-transfer rates computed are reliable. However, our 3ijvertor plate as the heat pulse hits the target plate since our
resolution is inadequate to resolve the heat flux to the diresolution is inadequate. Efforts are underway to parallelize

i

asm 19. 1 [Y+ peak = 0.39]

= 3

N\

e

R EEES
<

AT
\Q“““:‘\\\\\\\“

RIS
SSRIRINRC
R

vertor plate when the heat pulse hits the target plate. the simulation codesaac so that finer 3D grids can be em-
ployed. The formulation of the steady-state toroidal heat load
VI. CONCLUSION problem for 3D mean shear flows is under consideration.

Here we have considered wall heat flux in shear flows
over toroidal cavities using ASM arl¢- € turbulence models ACKNOWLEDGMENTS
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