759 research outputs found

    On biosignatures for Mars

    Get PDF
    In this work, we address the difficulty of reliably identifying traces of life on Mars. Several independent lines of evidence are required to build a compelling body of proof. In particular, we underline the importance of correctly interpreting the geological and mineralogical context of the sites to be explored for the presence of biosignatures. We use as examples to illustrate this, ALH84001 (where knowledge of the geological context was very limited) and other terrestrial deposits, for which this could be properly established. We also discuss promising locations and formations to be explored by ongoing and future rover missions, including Oxia Planum, which, dated at 4.0 Ga, is the most ancient Mars location targeted for investigation yet

    Prenatal BoBsTM in the cytogenetic analysis of products of spontaneous miscarriage

    Get PDF
    Background. Fifty percent of spontaneous miscarriages (SMs) are attributed to chromosomal abnormalities. Cytogenetic analysis is an important tool for patient counselling and assessment of the risk of recurrence in future pregnancies. Conventional karyotyping has been the gold standard for chromosomal investigation of products of conception (POC), but it has limitations due to sample maceration, culture failure and maternal cell contamination. Molecular cytogenetic approaches have therefore been developed and found valuable in the cytogenetic investigation of these samples. The Prenatal BoBsTM and KaryoLite BoBsTM, based on the newly developed BACs-on-BeadsTM technology, have been described as reliable tests for rapid detection of aneuploidies in prenatal and POC samples, respectively.Objective. To describe our clinical experience of routine screening of POC samples with Prenatal BoBsTM, the test used by our laboratory in France.Methods. Seventeen samples collected at the University Hospital of Sidi Bel Abbès (Western Algeria) and a further 60 from the University Hospital of Clermont-Ferrand (France) were analysed (19 chorionic villi from products of curettage, 12 placentas, 9 amniotic cells and 37 biopsy specimens). All were screened for the frequent aneuploidies (chromosomes 13, 18, 21, X and Y) in addition to nine microdeletion/ microduplication syndrome regions by Prenatal BoBsTM. Standard karyotyping was performed on 51 samples, but failed in 38 cases.Results. Prenatal BoBsTM identified one trisomy 21 and one deletion of 17p13.3. Furthermore, it provided a conclusive result in cases of culture failure (n=38) and in samples with macerated tissue (n=19). The overall failure rate was 11.4%.Conclusions. Prenatal BoBsTM is a promising technology that represents a fast, sensitive and robust alternative to routine screening for chromosomal abnormality in products of SM. Furthermore, it overcomes the limitations of conventional karyotyping and current molecular cytogenetic techniques

    Anomaly detection in quasi-periodic energy consumption data series: a comparison of algorithms

    Get PDF
    The diffusion of domotics solutions and of smart appliances and meters enables the monitoring of energy consumption at a very fine level and the development of forecasting and diagnostic applications. Anomaly detection (AD) in energy consumption data streams helps identify data points or intervals in which the behavior of an appliance deviates from normality and may prevent energy losses and break downs. Many statistical and learning approaches have been applied to the task, but the need remains of comparing their performances with data sets of different characteristics. This paper focuses on anomaly detection on quasi-periodic energy consumption data series and contrasts 12 statistical and machine learning algorithms tested in 144 different configurations on 3 data sets containing the power consumption signals of fridges. The assessment also evaluates the impact of the length of the series used for training and of the size of the sliding window employed to detect the anomalies. The generalization ability of the top five methods is also evaluated by applying them to an appliance different from that used for training. The results show that classical machine learning methods (Isolation Forest, One-Class SVM and Local Outlier Factor) outperform the best neural methods (GRU/LSTM autoencoder and multistep methods) and generalize better when applied to detect the anomalies of an appliance different from the one used for training

    Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells

    Get PDF
    PTX3 is a prototypic of long pentraxin consisting of an N-terminal portion coupled to a C-terminal pentraxin domain, the latter related to short pentraxins (C-reactive protein and serum amyloid P component). PTX3 is a soluble pattern recognition receptor, which plays a non-redundant role in resistance against selected pathogens and in female fertility. The present study was designed to analyze the production of PTX3 by human dendritic cells (DC) and to define the role of different innate immunity receptors in its induction. Human monocyte-derived DC produced copious amounts of PTX3 in response to microbial ligands engaging different members of the Toll-like receptor (TLR) family (TLR1 through TLR6), whereas engagement of the mannose receptor had no substantial effect. DC were better producers of PTX3 than monocytes and macrophages. Freshly isolated peripheral blood myeloid DC produced PTX3 in response to diverse microbial stimuli. In contrast, plasmacytoid DC exposed to influenza virus or to CpG oligodeoxynucleotides engaging TLR9, did not produce PTX3. PTX3-expressing DC were present in inflammatory lymph nodes from HIV-infected patients. These results suggest that DC of myelomonocytic origin are a major source of PTX3, a molecule which facilitates pathogen recognition and subsequent activation of innate and adaptive immunity

    Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Get PDF
    Finally, we would like to recognize the help and support of ESA, Roscosmos, the European states and agencies participating in the ExoMars program, and NASA. We really are doing this together for the benefit of all.The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.European Space AgencyRoscosmosExoMars programNational Aeronautics & Space Administration (NASA

    Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Get PDF
    The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510

    May Strenuous Endurance Sports Activity Damage the Cardiovascular System of Healthy Athletes? A Narrative Review

    Get PDF
    The positive effects of physical activity are countless, not only on the cardiovascular system but on health in general. However, some studies suggest a U-shape relationship between exercise volume and effects on the cardiovascular system. On the basis of this perspective, moderate-dose exercise would be beneficial compared to a sedentary lifestyle, while very high-dose physical activity would paradoxically be detrimental. We reviewed the available evidence on the potential adverse effects of very intense, prolonged exercise on the cardiovascular system, both acute and chronic, in healthy athletes without pre-existing cardiovascular conditions. We found that endurance sports activities may cause reversible electrocardiographic changes, ventricular dysfunction, and troponin elevation with complete recovery within a few days. The theory that repeated bouts of acute stress on the heart may lead to chronic myocardial damage remains to be demonstrated. However, male veteran athletes with a long sports career show an increased prevalence of cardiovascular abnormalities such as electrical conduction delay, atrial fibrillation, myocardial fibrosis, and coronary calcifications compared to non-athletes. It must be underlined that the cause–effect relationship between such abnormalities and the exercise and, most importantly, the prognostic relevance of such findings remains to be established

    Clinical application of tumour-in-normal contamination assessment from whole genome sequencing

    Get PDF
    The unexpected contamination of normal samples with tumour cells reduces variant detection sensitivity, compromising downstream analyses in canonical tumour-normal analyses. Leveraging whole-genome sequencing data available at Genomics England, we develop a tool for normal sample contamination assessment, which we validate in silico and against minimal residual disease testing. From a systematic review of 771 patients with haematological malignancies and sarcomas, we find contamination across a range of cancer clinical indications and DNA sources, with highest prevalence in saliva samples from acute myeloid leukaemia patients, and sorted CD3+ T-cells from myeloproliferative neoplasms. Further exploration reveals 108 hotspot mutations in genes associated with haematological cancers at risk of being subtracted by standard variant calling pipelines. Our work highlights the importance of contamination assessment for accurate somatic variants detection in research and clinical settings, especially with large-scale sequencing projects being utilised to deliver accurate data from which to make clinical decisions for patient care

    Direct comparison of B-Type Natriuretic Peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: the Valsartan Heart Failure (Val-HeFT) data

    Get PDF
    Background: The B-type or brain natriuretic peptides (BNP) and the amino-terminal probrain natriuretic peptide (NT-proBNP) are good markers of prognosis and diagnosis in chronic heart failure (HF). It is unclear, however, whether differences in their biological characteristics modify their clinical correlates and prognostic performance in HF. This work aimed to provide a direct comparison of the prognostic value of BNP and NTproBNP in patients with chronic and stable HF. Methods: We measured BNP and NT-proBNP at baseline in 3916 patients enrolled in the Valsartan Heart Failure Trial. To identify the variables associated with both peptides, we conducted simple and multivariable linear regression analyses. We used Cox multivariable regression models to evaluate the independent prognostic value for all-cause mortality, mortality and morbidity, and hospitalization for HF. Prognostic performance was assessed by pairwise comparisons of the area under the curve of receiver-operator characteristic curves. Results: NT-proBNP and BNP had similar relationships with age, left ventrical ejection fraction, and internal diameter and creatinine clearance. Either peptide ranked as the first independent predictor of outcome after adjustment for major confounding clinical characteristics. ROC curves were almost superimposable for all-cause mortality (area under the curve (SE): BNP 0.665 (0.011) vs NT-proBNP 0.679 (0.011); P 0.0734), but NT-proBNP was superior to BNP for predicting mortality and morbidity (P 0.032) or hospitalization for HF (P 0.0143). Overall sensitivity and specificity ranged from 0.590 to 0.696. Conclusions: The natriuretic peptides BNP and NTproBNP showed subtle differences in their relation to clinical characteristics and prognostic performance in a large population of patients with chronic and stable HF. They were the most powerful independent markers of outcome in HF
    corecore