344 research outputs found

    Multiscale thermodynamics of charged mixtures

    Get PDF
    A multiscale theory of interacting continuum mechanics and thermodynamics of mixtures of fluids, electrodynamics, polarization and magnetization is proposed. The mechanical (reversible) part of the theory is constructed in a purely geometric way by means of semidirect products. This leads to a complex Hamiltonian system with a new Poisson bracket, which can be used in principle with any energy functional. The thermodynamic (irreversible) part is added as gradient dynamics, generated by derivatives of a dissipation potential, which makes the theory part of the GENERIC framework. Subsequently, Dynamic MaxEnt reductions are carried out, which lead to reduced GENERIC models for smaller sets of state variables. Eventually, standard engineering models are recovered as the low-level limits of the detailed theory. The theory is then compared to recent literature.Comment: Submitted to journa

    A Systematic Review of Spatial Differences of the Ball Impact within the Serve Type at Professional and Junior Tennis Players

    Get PDF
    Since the flat serve (FS) minimizes the ball spin and kick serve (KS) combined topspin and sidespin, this systematic review aimed to explore the ball impact location (BI) within the FS and KS at the professional men, junior men, and women tennis players. The PRISMA guideline was used, and the original articles were searched in Scopus, Web of Science, and PubMed. The means and standard deviations computed from the distance of BI from the origin within the FS and KS on the x, y, and z axes (global coordinate system) were normalized by the participants’ height and weighted by the number of participants in one-way ANOVA. Ten articles with a pooled sample of 133 males and 51 females aged 11–25 were included. The professional men had more stable BI on the x-axis within the FS by 56% (p < 0.001), within the KS by 58% (p < 0.001), and on the y-axis within the KS by 90% (p < 0.001) than junior men. The professional and junior men had the BI more leftwards from the origin on the x-axis within the KS by 188% (p < 0.001) and 88% (p < 0.001), respectively than within the FS

    A Systematic Review of Dynamic Forces and Kinematic Indicators of Front and Roundhouse Kicks across Varied Conditions and Participant Experience

    Get PDF
    Impact force and maximum velocity are important indicators of kick efficiency. Therefore, this systematic review compared the front kick (FK) and roundhouse kick (RK), including their impact force, maximum velocity, angular velocity, and execution time, considering various target types and experience levels. Following PRISMA guidelines, the Web of Science, SportDiscus, and PubMed were systematically searched for articles published from January 1982 to May 2022. Normalized kicking values were compared using one-way ANOVA. Eighteen articles included FKs (sample: 113 elite men, 109 sub-elite men, and 46 novices), and twenty-five articles included RKs (sample: 238 elite men, 143 sub-elite men, and 27 novice men). The results indicate that the impact force of the FK were 47% (p < 0.01), 92% (p < 0.01), and 120% (p < 0.01) higher than those of the RK across novice, sub-elite, and elite groups, respectively. Moreover, the maximum foot velocity of the RK was 44% (p < 0.01) and 48% (p < 0.01) higher than that of the FK for the sub-elite and elite groups, respectively. Furthermore, the elite group had 65% (p < 0.01) higher knee extension angular velocity with the RK than with the FK and 138% (p < 0.01) higher hip extension angular velocity with the FK than with the RK. In summary, the findings suggest that the FK is more effective in generating forceful kicks, while the RK has the potential for rapid execution

    Effect of strength training programs on front push kick dynamics and kinematics

    Get PDF
    Background and Study Aim: The general fitness requirements for any combat activity include the flexibility, speed, power, muscular endurance, aerobic capacity, muscular strength, agility, balance, coordination, and body composition. In addition, the development of these fitness component should support and not disrupt the development and practice of combat techniques The aim of this study was knowledge about the effects of two programs of strength training on front push kick dynamics and kinematics across different loading conditions (no-load up to 45kg of external load) in professional soldiers. Material and Methods: Sixteen professional military personnel were randomized into two groups who performed an 8-week intervention program focused either on functional training with a core emphasis (FCE: 26.8 ±10.1 years, 84.2 ±5.4 kg, 181.1 ±6.4 cm) or traditional strength preparation (TSP: 26.8 ±10.1 years, 84.2 ±5.4 kg, 181.1 ±6.4 cm). Both groups performed 5 front push kicks into a force plate across 5 different loading conditions and forces and kinematics were measured. Results: The main differences in the performance of the front push kicks after FCE were that impulse increased by 16% and the impact time of the front kicks were prolonged by 10% whereas after TSP the peak force was increased by 20% and the angular velocity of the knee by 13%. Both training programs promoted changes in the coordination of movement as quantified by principal component analysis. Conclusions: The FCE should be included in training close combat to increase impulse of the front push kick and TSP should be included to increase the peak force and the angular velocity of the knee. The combination of FCE and TSP should be used in training as both could improve kicking performance

    Coherent "metallic" resistance and medium localisation in a disordered 1D insulator

    Get PDF
    It is believed, that a disordered one-dimensional (1D) wire with coherent electronic conduction is an insulator with the mean resistance \simeq e^{2L/\xi} and resistance dispersion \Delta_{\rho} \simeq e^{L/\xi}, where L is the wire length and \xi is the electron localisation length. Here we show that this 1D insulator undergoes at full coherence the crossover to a 1D "metal", caused by thermal smearing and resonant tunnelling. As a result, \Delta_{\rho} is smaller than unity and tends to be L/\xi - independent, while grows with L/\xi first nearly linearly and then polynomially, manifesting the so-called medium localisation.Comment: 4 pages, 4 figures, RevTeX

    Principal component analysis can be used to discriminate between elite and sub-elite kicking performance

    Get PDF
    Contemporary descriptions of motor control suggest that variability in movement can be indicative of skilled or unskilled performance. Here we used principal component analysis (PCA) to study the kicking performance of elite and sub-elite soldiers who were highly familiar with the skill, in order to compare the variability in the first and second principal components. The subjects kicked a force plate under a range of loaded conditions, and their movement was recorded using optical motion capture. The first principal component explained > 92% of the variability across all kinematic variables when analysed separately for each condition and both groups and explained more of the variation in the movement of the elite group. There was more variation in the loading coefficient of the first principal component for the sub-elite group. In contrast, for the second principal component there was more variation in the loading coefficient for the elite group, and the relative magnitude of the variation was greater than for the first principal component for both groups. These results suggest that the first principal component represented the most fundamental movement pattern and there was less variation in this mode for the elite group. In addition, more of the variability was explained by hip than knee angle entered when both variables were entered into the same PCA which suggests that the movement is driven by the hip

    Testing distance characteristics and reference values for ice-hockey straight sprint speed and acceleration. A systematic review and meta-analyses.

    Get PDF
    Ice-hockey requires high acceleration and speed sprint abilities, but it is unclear what the distance characteristic is for measuring these capabilities. Therefore, this systematic meta-analysis aims to summarize the sprint reference values for different sprint distances and suggest the appropriate use of ice-hockey straight sprint testing protocols. A total of 60 studies with a pooled sample of 2254 males and 398 females aged 11-37 years were included. However, the pooled data for women was not large enough to permit statistical analysis. The sprint distance used for measuring the reported acceleration and speed was between 4-48 m. Increased test distance was positively associated with increased speed (r = 0.70) and negatively with average acceleration (r = -0.87). Forward skating sprint speed increases with the measured distance up to 26 m and do not differ much from longer distance tests, while acceleration decreases with a drop below 3 m/s at distances 15 m and longer. The highest acceleration (5.89 m/s peak, 3.31 m/s average) was achieved in the shortest distances up to 7 m which significantly differs from 8-14 m tests. The highest speed (8.1 m/s peak, 6.76 m/s average) has been recorded between 26-39 m; therefore, distances over 39 m are not necessary to achieve maximum speed. Considering match demands and most reported test distances, 6.1 m is the recommended distance for peak acceleration and 30 m for peak speed. The sprint time, acceleration, and speed of each individual and the number of skating strides should be reported in future studies

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages
    corecore