52 research outputs found

    Changes in Culture Expanded Human Amniotic Epithelial Cells: Implications for Potential Therapeutic Applications

    Get PDF
    Human amniotic epithelial cells (hAEC) isolated from term placenta have stem cell-like properties, differentiate into tissue specific cells and reduce lung and liver inflammation and fibrosis following transplantation into disease models established in mice. These features together with their low immunogenicity and immunosuppressive properties make hAEC an attractive source of cells for potential therapeutic applications. However, generation of large cell numbers required for therapies through serial expansion in xenobiotic-free media may be a limiting factor. We investigated if hAEC could be expanded in xenobiotic-free media and if expansion altered their differentiation capacity, immunophenotype, immunosuppressive properties and production of immunomodulatory factors. Serial expansion in xenobiotic-free media was limited with cumulative cell numbers and population doubling times significantly lower than controls maintained in fetal calf serum. The epithelial morphology of primary hAEC changed into mesenchymal-stromal like cells by passage 4–5 (P4–P5) with down regulation of epithelial markers CK7, CD49f, EpCAM and E-cadherin and elevation of mesenchymal-stromal markers CD44, CD105, CD146 and vimentin. The P5 hAEC expanded in xenobiotic-free medium differentiated into osteocyte and alveolar epithelium-like cells, but not chondrocyte, hepatocyte, α- and β-pancreatic-like cells. Expression of HLA Class IA, Class II and co-stimulatory molecules CD80, CD86 and CD40 remained unaltered. The P5 hAEC suppressed mitogen stimulated T cell proliferation, but were less suppressive compared with primary hAEC at higher splenocyte ratios. Primary and P5 hAEC did not secrete the immunosuppressive factors IL-10 and HGF, whereas TGF-β1 and HLA-G were reduced and IL-6 elevated in P5 hAEC. These findings suggest that primary and expanded hAEC may be suitable for different cellular therapeutic applications

    Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Get PDF
    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis

    Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation

    Get PDF
    Stem cells derived from placental tissues are an attractive source of cells for regenerative medicine. Amniotic epithelial cells isolated from human amnion (hAECs) have desirable and competitive characteristics that make them stand out between other stem cells. They have the ability to differentiate toward all three germ layers, they are not tumorigenic and they have immunosuppressive properties. Although liver transplantation is the best way to treat acute and chronic hepatic failure patients, there are several obstacles. Recently, stem cells have been spotlighted as alternative source of hepatocytes because of their potential for hepatogenic differentiation. In this work, we aimed to study the proliferation and survival of the hAECs during their hepatic differentiation. We have also analyzed the changes in pluripotency and hepatic markers. We differentiated amniotic cells applying a specific hepatic differentiation (HD) protocol. We determined by qRT-PCR that hAECs express significant levels of SOX-2, OCT-4 and NANOG during at least 15 days in culture and these pluripotent markers diminish during HD. SSEA-4 expression was reduced during HD, measured by immunofluorescence. Morphological characteristics became more similar to hepatic ones in differentiated cells and representative hepatic markers significantly augmented their expression, measured by qRT-PCR and Western blot. Cells achieved a differentiation efficiency of 75%. We observed that HD induced proliferation and promoted survival of hAECs, during 30 days in culture, evaluated by 3H-thymidine incorporation and MTT assay. HD also promoted changes in hAECs cell cycle. Cyclin D1 expression increased, while p21 and p53 levels were reduced. Immunofluorescence analysis showed that Ki-67 expression was upregulated during HD. Finally, ERK 1/2 phosphorylation, which is intimately linked to proliferation and cell survival, augmented during all HD process and the inhibition of this signaling pathway affected not only proliferation but also differentiation. Our results suggest that HD promotes proliferation and survival of hAECs, providing important evidence about the mechanisms governing their hepatic differentiation. We bring new knowledge concerning some of the optimal transplantation conditions for these hepatic like cells.Fil: Maymo, Julieta Lorena. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Riedel, Rodrigo Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pérez Alcázar, Germán Antonio. Hospital Universitario Virgen Macarena;Fil: Magatti, Marta. Istituto Ospedaliero;Fil: Maskin, Bernardo. Hospital Nacional Professor Dr. Alejandro Posadas; ArgentinaFil: Dueñas, José Luis. Hospital Universitario Virgen Macarena;Fil: Parolini, Ornella. Istituto Ospedaliero;Fil: Sánchez-Margalet, Víctor. Hospital Universitario Virgen Macarena;Fil: Varone, Cecilia Laura. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Liver cell therapy: is this the end of the beginning?

    Get PDF
    The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration

    Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    Get PDF
    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources

    Immunogenicity and Immunomodulatory Properties of Hepatocyte-like Cells Derived from Human Amniotic Epithelial Cells

    No full text
    Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC

    Immunogenicity and Immunomodulatory Properties of Hepatocyte-like Cells Derived from Human Amniotic Epithelial Cells

    No full text
    Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC

    Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny

    Get PDF
    Mitochondrial DNA (mtDNA) copy number is strictly regulated during differentiation so that cells with a high requirement for ATP generated through oxidative phosphorylation have high mtDNA copy number, whereas those with a low requirement have few copies. Using immunoprecipitation of DNA methylation on 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), which distinguish between de novo DNA methylation and demethylation, respectively, we set out to determine whether DNA methylation at exon 2 of the human mtDNA-specific polymerase (DNA polymerase gamma A (POLGA)) regulates cell-specific mtDNA copy number in highly proliferative and terminally differentiated cells. Highly proliferative cancer and pluripotent and multipotent cells possessed low mtDNA copy number and were highly methylated at exon 2 of POLGA in contrast to post-mitotic cells. Unlike neural stem cells, cancer cells were unable to differentiate and remained extensively DNA methylated at exon 2 of POLGA. However, mtDNA depletion of cancer cells reduced DNA methylation at exon 2 of POLGA as they replenished mtDNA to form tumours in mice. Glioblastoma cells treated with the DNA demethylation agent 5-azacytidine over 28 days of astrocyte-induced differentiation demethylated exon 2 of POLGA leading to increased mtDNA copy number and expression of the astrocyte endpoint marker glial fibrillary acidic protein (GFAP). However, the demethylation agent vitamin C (VitC) was unable to sustain increased mtDNA copy number and differentiation, as was the case when VitC was withdrawn after short-term treatment. These data demonstrate that DNA demethylation of POLGA is an essential regulator of mtDNA copy number and cellular fate and that cancer cells are only able to modulate DNA methylation of POLGA and mtDNA copy number in the presence of a DNA demethylation agent that inhibits de novo methyltransferase 1 activity

    Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines

    No full text
    Improved rationally designed lead drug structures against African trypanosomiasis, Chagas disease, and leishmaniasis were obtained against trypanothione reductase from Trypanosoma cruzi. Substituted-benzyl [3-(2-chloro-4a,10a-dihydrophenothiazin-10-yl)propyl]dimethylammonium salts, synthesized by Menschutkin quaternization of the tertiary alkylamine ω-nitrogen atom of chlorpromazine, were linear, competitive inhibitors of recombinant trypanothione reductase from T. cruzi, with either trypanothione disulfide or N-benzyloxycarbonyl-Lcysteinylglycyl 3-dimethylaminopropylamide disulfide as substrate. The permanent positive charge on the distal nitrogen atom of the tricyclic side chain contribution to binding was estimated as g5.6 kcal‚mol-1 by comparison with the analogue with the cationic nitrogen atom of the quaternary replaced by an ether oxygen atom. A further major contribution to improving Ki values and inhibition strength was the hydrophobic natures and structures of the N-benzyl substituents. The strongest inhibitor, the [3-(2-chloro-4a,10a-dihydrophenothiazin-10-yl)propyl]- (3,4-dichlorobenzyl)dimethylammonium derivative (Ki 0.12 µM), was ∼2 orders of magnitude more inhibitory than the parent chlorpromazine. Several of these quaternary phenothiazines completely inhibited T. brucei parasite growth in vitro at \u3c 1 µM). Although active against Leishmania donovani, none of the analogues showed major improvement in this activity relative to chlorpromazine or other nonquaternized phenothiazines. The p-tert-butylbenzyl-quaternized analogue very strongly inhibited (ED50 \u3c 1 µM) growth of the amastigote stage of T. cruzi
    • …
    corecore