25 research outputs found

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    Get PDF
    IFIH1 gain‐of‐function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition

    Get PDF
    Transmembrane proteins in the outer membrane of Gram-negative bacteria are almost exclusively β-barrels. They are inserted into the outer membrane by a conserved and essential protein complex called the BAM (for β-barrel assembly machinery). In this commentary, we summarize current research into the mechanism of this protein complex and how it relates to type V secretion. Type V secretion systems are autotransporters that all contain a β-barrel transmembrane domain inserted by BAM. In type Vc systems, this domain is a homotrimer. We argue that none of the current models are sufficient to explain BAM function particularly regarding type Vc secretion. We also find that current models based on the well-studied model system Escherichia coli mostly ignore the pronounced differences in BAM composition between different bacterial species. We propose a more holistic view on how all OMPs, including autotransporters, are incorporated into the lipid bilayer

    Improved hierarchical modelling for aerodynamically coupled systems

    No full text
    Strong aerodynamic coupling can make the high fidelity simulation of a number of critical aero-engine components prohibitively expensive - particularly within the timeframes of industrial design cycles. This paper develops a body force based hierarchy of approaches to modelling the effects of blade rows. These are envisaged as allowing the computationally expensive parts of coupled systems to be resolved much more cheaply, rendering the cost of the overall simulation as more manageable. Simulation of the coupling that exists between the flow around an aero-engine intake and its fan is particularly emphasised, as this is becoming stronger and more performance critical with the modern trends towards the reduction of the relative diffuser length. The use of the viscous smeared geometry level of fidelity is initially shown to be an effective model over a number of cases a simple compressor blade row, a modern high bypass fan, and the Darmstadt rotor. After this, it is shown working as part of a coupled system in an intake experiencing crossflow. Higher fidelity geometry representations are then considered, which mimic the effect of struts. Finally, a mix of various fidelity geometry representations and turbulence modelling approaches is shown to bring otherwise hugely expensive calculations within the realm of practical computation, in the form of a full fan-to-flap calculation
    corecore