145 research outputs found

    Flat Lens Focusing Demonstrated With Left-Handed Metamaterial

    Get PDF
    Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation

    Radio Frequency Mass Gauging of Propellants

    Get PDF
    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations

    Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement

    Get PDF
    OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine

    Proton transfer and esterification reactions in EMIMOAc-based acidic ionic liquids

    Get PDF
    Acetate-based ionic liquids (such as 1-ethyl-3-methylimidazolium acetate, EMIMOAc) have potential applications for CO2 absorption and electrochemical reduction, chemical separations and extractions, and Fischer esterification of alcohols, amines, and starch. Both strong and weak organic acids can be dissolved in EMIMOAc and yield interesting proton-rich acidic ionic liquid solutions. We have used GCMS vapor pressure measurements, spectroscopic methods, calorimetry, and viscosity/conductivity measurements to investigate the properties and reactions of various acids dissolved in EMIMOAc. Unique proton transfer and esterification reactions are observed in many of these acidic solutions with carboxylic acids or sulfonic acids as solutes. Some acids react with the acetate anion to produce acetic acid, which provides a measure of acid strength in ionic liquid solvents. In addition, we observed an esterification reaction that might involve the imidazolium cation and the acetate anion to yield methyl acetate

    Secondary structure of Ac-Alan_n-LysH+^+ polyalanine peptides (nn=5,10,15) in vacuo: Helical or not?

    Get PDF
    The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime example that a secondary structure motif which is well-known from the solution phase (here: helices) can be formed in vacuo. We here revisit this conclusion for n=5,10,15, using density-functional theory (van der Waals corrected generalized gradient approximation), and gas-phase infrared vibrational spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide good qualitative agreement (theory vs. experiment) already in the harmonic approximation. For n=5, the lowest energy conformer is not a simple helix, but competes closely with \alpha-helical motifs at 300K. Close agreement between infrared spectra from experiment and ab initio molecular dynamics (including anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter

    Conductivity, Viscosity, Spectroscopic Properties of Organic Sulfonic Acid solutions in Ionic Liquids

    Get PDF
    Sulfonic acids in ionic liquids (ILs) are used as catalysts, electrolytes, and solutions for metal extraction. The sulfonic acid ionization states and the solution acid/base properties are critical for these applications. Methane sulfonic acid (MSA) and camphor sulfonic acid (CSA) are dissolved in several IL solutions with and without bis(trifluoromethanesulfonyl)imine (HTFSI). The solutions demonstrated higher conductivities and lower viscosities. Through calorimetry and temperature-dependent conductivity analysis, we found that adding MSA to the IL solution may change both the ion migration activation energy and the number of “free” charge carriers. However, no significant acid ionization or proton transfer was observed in the IL solutions. Raman and IR spectroscopy with computational simulations suggest that the HTFSI forms dimers in the solutions with an N-H-N “bridged” structure, while MSA does not perturb this hydrogen ion solvation structure in the IL solutions. CSA has a lower solubility in the ILs and reduced the IL solution conductivity. However, in IL solutions containing 0.4 M or higher concentration of HTFSI, CSA addition increased the conductivity at low CSA concentrations and reduced it at high concentrations, which may indicate a synergistic effect

    Vapor−Wall Deposition in Chambers: Theoretical Considerations

    Get PDF
    In order to constrain the effects of vapor–wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, researchers recently varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area (Zhang, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 5802). Using a coupled vapor–particle dynamics model, we examine the extent to which this increase is the result of vapor–wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic time scales of gas-phase reaction, vapor–wall deposition, and gas–particle equilibration. The gas–particle equilibration time scale depends on the gas–particle accommodation coefficient α_p. Regardless of the extent of kinetic limitation, vapor–wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor–wall deposition and kinetic limitations must be taken into account
    • 

    corecore