145 research outputs found
Flat Lens Focusing Demonstrated With Left-Handed Metamaterial
Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation
Radio Frequency Mass Gauging of Propellants
A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations
Cardiovascular-renal axis disorders in the domestic dog and cat: a veterinary consensus statement
OBJECTIVES
There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised.
METHODS
Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species.
RESULTS
Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD.
DISCUSSION
The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine
Proton transfer and esterification reactions in EMIMOAc-based acidic ionic liquids
Acetate-based ionic liquids (such as 1-ethyl-3-methylimidazolium acetate, EMIMOAc) have potential applications for CO2 absorption and electrochemical reduction, chemical separations and extractions, and Fischer esterification of alcohols, amines, and starch. Both strong and weak organic acids can be dissolved in EMIMOAc and yield interesting proton-rich acidic ionic liquid solutions. We have used GCMS vapor pressure measurements, spectroscopic methods, calorimetry, and viscosity/conductivity measurements to investigate the properties and reactions of various acids dissolved in EMIMOAc. Unique proton transfer and esterification reactions are observed in many of these acidic solutions with carboxylic acids or sulfonic acids as solutes. Some acids react with the acetate anion to produce acetic acid, which provides a measure of acid strength in ionic liquid solvents. In addition, we observed an esterification reaction that might involve the imidazolium cation and the acetate anion to yield methyl acetate
Recommended from our members
Integrated Electrorefining Efficiency Test for Pyrochemical Fuel Cycle
Pyrochemical processing plays an important role in the development of next generation nuclear reactors and closed nuclear fuel cycle technology. The Idaho National Laboratory (INL) has implemented a pyrochemical process for the treatment of sodium-bonded spent fuel from the Experimental Breeder Reactor-II (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE) [1]. Processing of the spent fuel and associated research and development activities have been integrated into DOEâs Advanced Fuel Cycle Initiatives (AFCI) program since 2003. Electrorefining can be considered to be the signature or central technology for pyrochemical processing. In order to assess the efficiencies involved in the electrorefining process, an integrated electrorefining efficiency test was performed in the Mk-IV electrorefiner. This paper summarizes the observations and results obtained from the test. EXPERIMENT AND RESULTS The primary goal of the integrated processing efficiency test is to demonstrate the integrated actinide dissolution and recovery efficiencies typical for the fixed operating parameters that have been applied to Mk-IV electrorefiner (ER) and cathode processor (CP) to treat spent EBR-II driver fuel during the last three years. The findings are of importance for scaling-up the pyroprocess to recover and recycle valuable actinides from spent nuclear fuel. The test was performed in the Mk-IV electrorefiner. The ER is located in the hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex. Descriptions of the major components of the ER and the process in general have been provided elsewhere [2]. Salt and cadmium levels were measured, and multiple samples were obtained prior to performing the integrated test to establish an ER baseline for assessing the test results. The test consisted of four electrorefining batches of spent driver fuel with approximately 50 kg heavy metal. Typically, three to four ER runs are required to complete a batch. Fig. 1 shows pictures of the cathodes produced by three electrorefining runs during the second batch. The cathode No.3 in the figure has clearly different morphology than that of the first two. The cathodes produced by the other three batches have the similar morphology as those pictured. The first and second cathodes are ordinary uranium dendrite, and the third and fourth cathode show typically high Zr content morphology [3]. The end-point for each batch was determined by weighing each anode basket and assuring a net residue mass being equal or less than 3.0 kg. The 3.0 kg residue included any un-dissolved fuel constituents and adhering salt. Previous operating experience has shown that uranium dissolution in excess of 99.7 wt% was achieved when using this established end-point. Cladding hull samples were taken from each basket after it was removed from the ER. The actinide dissolution efficiency will be evaluated when the analytical results become available. Cathode No. 1 Cathode No. 2 Cathode No. 3 Fig.1 Three cathodes produced through electrorefining the second batch of spent EBR-II driver fuel As a part of the integrated efficiency test, the ca
Recommended from our members
Engineering-Scale Liquid Cadmium Cathode Experiments
Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments
Recommended from our members
Integrated Efficiency Test for Pyrochemical Fuel Cycles
An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decadeâs worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test
Secondary structure of Ac-Ala-LysH polyalanine peptides (=5,10,15) in vacuo: Helical or not?
The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime
example that a secondary structure motif which is well-known from the solution
phase (here: helices) can be formed in vacuo. We here revisit this conclusion
for n=5,10,15, using density-functional theory (van der Waals corrected
generalized gradient approximation), and gas-phase infrared vibrational
spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide
good qualitative agreement (theory vs. experiment) already in the harmonic
approximation. For n=5, the lowest energy conformer is not a simple helix, but
competes closely with \alpha-helical motifs at 300K. Close agreement between
infrared spectra from experiment and ab initio molecular dynamics (including
anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter
Conductivity, Viscosity, Spectroscopic Properties of Organic Sulfonic Acid solutions in Ionic Liquids
Sulfonic acids in ionic liquids (ILs) are used as catalysts, electrolytes, and solutions for metal extraction. The sulfonic acid ionization states and the solution acid/base properties are critical for these applications. Methane sulfonic acid (MSA) and camphor sulfonic acid (CSA) are dissolved in several IL solutions with and without bis(trifluoromethanesulfonyl)imine (HTFSI). The solutions demonstrated higher conductivities and lower viscosities. Through calorimetry and temperature-dependent conductivity analysis, we found that adding MSA to the IL solution may change both the ion migration activation energy and the number of âfreeâ charge carriers. However, no significant acid ionization or proton transfer was observed in the IL solutions. Raman and IR spectroscopy with computational simulations suggest that the HTFSI forms dimers in the solutions with an N-H-N âbridgedâ structure, while MSA does not perturb this hydrogen ion solvation structure in the IL solutions. CSA has a lower solubility in the ILs and reduced the IL solution conductivity. However, in IL solutions containing 0.4 M or higher concentration of HTFSI, CSA addition increased the conductivity at low CSA concentrations and reduced it at high concentrations, which may indicate a synergistic effect
VaporâWall Deposition in Chambers: Theoretical Considerations
In order to constrain the effects of vaporâwall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, researchers recently varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area (Zhang, X.; et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 5802). Using a coupled vaporâparticle dynamics model, we examine the extent to which this increase is the result of vaporâwall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic time scales of gas-phase reaction, vaporâwall deposition, and gasâparticle equilibration. The gasâparticle equilibration time scale depends on the gasâparticle accommodation coefficient α_p. Regardless of the extent of kinetic limitation, vaporâwall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vaporâwall deposition and kinetic limitations must be taken into account
- âŠ