762 research outputs found

    False vacuum decay in Jordan-Brans-Dicke cosmologies

    Get PDF
    The bubble nucleation rate in a first-order phase transition taking place in a background Jordan-Brans-Dicke cosmology is examined. The leading order terms in the nucleation rate when the Jordan-Brans-Dicke field is large (i.e., late times) are computed by means of a Weyl rescaling of the fields in the theory. It is found that despite the fact that the Jordan-Brans-Dicke field (hence the effective gravitational constant) has a time dependence in the false vacuum at late times the nucleation rate is time independent

    Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation

    Get PDF
    Pez is a non-transmembrane tyrosine phosphatase with homology to the FERM (4.1, ezrin, radixin, moesin) family of proteins. The subcellular localisation of Pez in endothelial cells was found to be regulated by cell density and serum concentration. In confluent monolayers Pez was cytoplasmic, but in cells cultured at low density Pez was nuclear, suggesting that it is a nuclear protein in proliferating cells. This notion is supported by the loss of nuclear Pez when cells are serum-starved to induce quiescence, and the rapid return of Pez to the nucleus upon refeeding with serum to induce proliferation. Vascular endothelial cells normally exist as a quiescent confluent monolayer but become proliferative during angiogenesis or upon vascular injury. Using a 'wound' assay to mimic these events in vitro, Pez was found to be nuclear in the cells that had migrated and were proliferative at the 'wound' edge. TGFbeta, which inhibits cell proliferation but not migration, inhibited the translocation of Pez to the nucleus in the cells at the 'wound' edge, further strengthening the argument that Pez plays a role in the nucleus during cell proliferation. Together, the data presented indicate that Pez is a nuclear tyrosine phosphatase that may play a role in cell proliferation.Carol Wadham, Jennifer R. Gamble, Mathew A. Vadas and Yeesim Khew-Goodal

    Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Get PDF
    We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs) within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths (&lambda;<sub><i>z</i></sub>) ranging from 5 to 50 km. We show that &lambda;<sub><i>z</i></sub> decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005) (VF05). We also find good agreement for the peak height of the momentum flux (<i>z</i><sub>diss</sub>) between our simulations and VF05 for GWs with initial &lambda;<sub><i>z</i></sub> &le; 2&pi; <i>H</i> in an isothermal, windless background, where <i>H</i> is the density scale height. We also confirm that <i>z</i><sub>diss</sub> increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial &lambda;<sub><i>z</i></sub>. We also simulate GW packets in a non-isothermal atmosphere. The net &lambda;<sub><i>z</i></sub> profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and &lambda;<sub><i>z</i></sub> spectra at both early and late times for GW packets with initial &lambda;<sub><i>z</i></sub> &ge; 10 km. These effects are caused by the increase in <i>T</i> in the thermosphere, and the decrease in <i>T</i> near the mesopause

    Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling

    Get PDF
    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex ways to influence production sustainability. In a mixed-methods approach, we combine qualitative and quantitative data to develop and simulate a system dynamics model that explores the systemic interaction of these drivers on the economic, environmental and social sustainability of agricultural production. We then use this model to evaluate the role of each driver in determining the differences in sustainability between three distinct production systems: crops only, livestock only, and an integrated crops and livestock system. The result from these modelling efforts found that the greatest potential for sustainability existed with the crops only production system. While this study presents a stand-alone contribution to sector knowledge and practice, it encourages future research in this sector that employs similar systems-based methods to enable more sustainable practices and policies within agricultural production

    Physiological Responses to Environmental Variation in Intertidal Red Algae: Does Thallus Morphology Matter?

    Get PDF
    Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features

    Secretion of Food Allergen Proteins in Saliva

    Get PDF
    RATIONALE: Peanut proteins were found to be secreted in 50% of lactating women’s breast milk. We wanted to develop a testing method to predict the secretion of peanut protein in breast milk. The secretion of food protein in saliva was hypothesized to be a possible predictor of secretion of foods in breast milk following ingestion. METHODS: Non-allergic volunteers, some lactating, ingested 50 grams of either whole peanuts, peanut milk or cow’s milk and various immunoassays were utilized to analyze for the presence of peanut or cow’s milk proteins in saliva and breast milk. Saliva and breast milk samples were subjected to SDS-PAGE, Western blot and ELISA analysis with anti-raw and roasted peanut and anti-alpha-casein antibodies and pooled serum IgE from peanut allergic individuals. RESULTS: Peanut protein levels in breast milk were undetectable using Western blot analysis and inconsistent with ELISA analysis. However, peanut proteins around 20 and 30 kDa that reacted with anti-roasted peanut antibody were detected, 6-18 hours following ingestion, in saliva of different individuals. An 18 KDa band that reacts with anti-alpha casein antibody was also detected in saliva 6-18 hours following ingestion. CONCLUSIONS: Secretion of food allergen proteins or peptides in saliva several hours following ingestion may have important implications for delayed allergic reaction by sensitive patients. Also, due to the fact that these proteins or peptides survive digestive enzymes, become absorbed into the blood stream and are subsequently secreted in biological fluids may indicate that they are most likely the sensitizing or tolerizing agent within an allergic food. Funding: National Peanut Board, USD
    • …
    corecore