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a  b  s  t  r  a  c  t

Agricultural  production  in the  United  States  is undergoing  marked  changes  due  to  rapid  shifts  in  consumer
demands,  input  costs,  and  concerns  for  food  safety  and environmental  impact.  Agricultural  production
systems  are  comprised  of  multidimensional  components  and  drivers  that  interact  in complex  ways  to
influence  production  sustainability.  In a mixed-methods  approach,  we combine  qualitative  and  quantita-
tive  data  to  develop  and  simulate  a system  dynamics  model  that  explores  the  systemic  interaction  of  these
drivers  on  the  economic,  environmental  and  social  sustainability  of agricultural  production.  We  then  use
this  model  to  evaluate  the  role  of  each  driver  in  determining  the  differences  in sustainability  between
griculture production systems
ystem dynamics modelling
rivers
arming policy

three  distinct  production  systems:  crops  only,  livestock  only,  and  an  integrated  crops  and  livestock  sys-
tem.  The  result  from  these  modelling  efforts  found  that  the greatest  potential  for  sustainability  existed
with  the  crops  only  production  system.  While  this  study  presents  a stand-alone  contribution  to  sector
knowledge  and  practice,  it encourages  future  research  in this  sector  that  employs  similar  systems-based
methods  to  enable  more  sustainable  practices  and  policies  within  agricultural  production.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Agricultural production systems undergo rapid changes in
esponse to shifts in production expenses, consumer demands,
nd increasing concerns for food safety, security, and environ-
ental impact (Hanson et al., 2008; Hendrickson et al., 2008). An
verriding concern is the need to develop sustainable production
ystems that address societal concerns for environmental impacts
nd nutritional value, while maintaining an economically feasible
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304-3800/© 2016 The Authors. Published by Elsevier B.V. This is an open access
y-nc-nd/4.0/).
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production system for farmers. Sustainable agricultural production
per Sassenrath et al. (2009) is: “an approach to producing food and
fibre which is profitable, uses on-farm resources efficiently to min-
imize adverse effects on environment and people, preserves the
natural productivity and quality of the land and water, and sustains
vibrant rural communities” (p.266). In aligning with this definition,
the five general goals that must be addressed by sustainable pro-
duction systems are therefore: supplying human needs, enhancing
the environment and natural resource base, increasing efficiency of
resource use, improving economic viability of farming, and enhanc-
ing quality of life for producers and society.

One way  to accomplish these sustainability goals has been to
employ integrated agricultural production techniques. Integrated
agricultural production is a mixed enterprise approach to farming
that uses natural resources through the combination of crop and
livestock inputs and outputs to promote environmentally benefi-

cial farming practices (Hendrickson et al., 2008; Boller et al., 2004).
A major benefit of integrated agricultural production is its inherent
ability to distribute, and thereby minimize, farmer risks through the
diversification of enterprises, allowing farmers to exploit a higher
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pectrum of marketing channels (Hendrickson et al., 2008). Despite
he fact that integrated production can greatly minimize overall
isk, it presents a substantial challenge in administering the com-
lex trade-offs of each individual farming component. Examples of
hese challenges include timing of operations, the type of equip-

ent used and allocated, and the timing of agricultural markets,
n concert with a range of other social, environmental, economic
nd technological considerations (Hendrickson et al., 2008; Archer
t al., 2007, 2008; Halloran and Archer, 2008).

At the core, the challenges in both single and mixed-enterprise
gricultural production exist in the task of operationalizing the
nteractions between disparate measures of productivity and sus-
ainability, and necessarily require adequate understanding of the
omplex interactions between environmental, social, and eco-
omic drivers. For example, ecological systems contain a multitude
f diverse components, interacting non-linearly and dynamically
n both space and time (Wu and Marceau, 2002). As Wu  and David
2002) mention, “An obvious challenge in modelling complex eco-
ogical systems is, then, to integrate the rigor of reductionism

ith the comprehensiveness of holism.” Similarly, social drivers
re often tenuous, highly changeable, and difficult to quantify
Ramalingham et al., 2008). In addition, environmental drivers
hat impact farming management choices are not always straight-
orward, a fact that is exemplified by the substantial loss of
onservation Reserve Program (CRP) lands to greater economic
eturn from corn production for biofuels (Hartman et al., 2011;
argione et al., 2009).

Past research has approached these complex aspects of agri-
ultural production through the use of modelling. Many models
re available that track crop and animal production for decision
upport, such as GPFARM (Great Plains Framework for Agricul-
ural Resource Management), among others (Rauff and Bello, 2015).
hese models include mechanistic and statistical approaches to
odel biophysical processes, and in some cases link these processes

o economic or multi-objective optimization to guide management
ecisions. While these models typically simulate bio-physical pro-
esses in great detail, their usefulness is often hampered by the
eed for large amounts of input data and by requirements for
xtensive calibration and validation before each use. Also, while
hese models are often complex, limiting their usefullness, the

ethods simplify the systemic and dynamic interdependencies
ecessary for intrinsically complex agricultural systems planning
Ramalingham, 2014). While Tanure et al. (2014) proposed a math-
matical model for use in decision support systems for farm
anagement to be applied within dynamic systems models, their
odels have not yet been applied to real agricultural production

ystems.
Here we assert that methods within the realm of such fields as

omplexity science, i.e. “systems thinking”, could be better-fit to
olistically understand agricultural system complexity, especially
iven the added task of considering social drivers and impacts.
omplex systems are typically characterized by interconnected and

nterdependent elements and dynamic feedback processes (also
now as “loops”). Through these processes, certain behaviours
ften emerge that are contrary to what was planned for or expected
Ramalingham et al., 2008; Sterman, 2000). Our approach to
gricultural system complexity focuses precisely on these three
oncepts – namely, (i) the interconnection and interdependence of
actors, (ii) dynamic feedback processes between these factors and
iii) the emergent behaviours that result – to study the systemic
nteraction of factors that influence sustainability. Here we  direct
ur attention to complexities of agricultural production including

ocietal, environmental, and economical aspects. Specifically, we
re interested in understanding the structural form of “drivers”,
hich are key factors that systemically and dynamically inter-

ct to influence system sustainability. Of the many methodologies
delling 333 (2016) 51–65

and tools that exist to tackle problems of this type, we elected to
use system dynamics modelling because of its ability to explic-
itly address problems with systemic and dynamic drivers, allowing
an improved understanding of emergent problems and behaviours
(Churchman, 1968; Sterman, 2000).

Our objective with this study was to make a novel contribution
to the sector by developing a preliminary system dynamics-based
approach to understand sustainable agricultural production. In
doing so, we hope to encourage a dynamic systems-based paradigm
shift in agricultural systems analysis. The questions that guided
these research efforts were:

1. What drivers influence agricultural production systems?
2. How do these drivers systemically and dynamically interact to

influence sustainability?
3.  Which type of production enterprise has the greatest chance for

sustainability?

To answer these research questions and accomplish our study
objective, we  use the system dynamics modelling environment,
STELLA (isee Systems, 2015) to capture and model the complexities
between human (social), environmental, and economic interac-
tions. Of the many software suites (e.g., VENSIM and POWERSIM)
or programming languages (i.e., C++ and Java) available for build-
ing and simulating system dynamics models, we chose STELLA
(isee Systems, Lebanon, NH) because of its low cost, intuitive and
user-friendly (no programming is required) interface, and widely
recognized modelling iconography. We  demonstrate the utility of
this approach through a sustainability assessment of three different
agricultural production systems (single or mixed enterprise sys-
tems) using a qualitative and quantitative systems dynamics model
that incorporates various aspects of crop and animal production
to output indices of economic, social and environmental sustaina-
bility. We present a detailed overview on the data and modelling
aspects of this study. We  then proceed with an example analysis
of model outputs and implications to present a methodology for
future modellers to leverage this work and continue building infor-
mative models to better understand this complex and important
topic of sustainable food production.

2. Data and modelling

This section presents the methodological steps to develop the
system dynamics model of three distinct agricultural systems. We
begin by providing a brief overview of the systems dynamic mod-
elling approach, highlighting the key modelling aspects that guided
our model building process. We then describe the types of data we
used to construct a qualitative and quantitative system dynamics
model, followed by a synopsis of the key aspects of model devel-
opment and analysis.

2.1. The system dynamics modelling approach

System dynamics modelling presents a means to describe and
simulate dynamically complex issues through the structural iden-
tification of feedback, and in many cases, delay processes that drive
system behaviour (Sterman, 2000; Pruyt, 2013). Since the forma-
tion of the modelling concept by Jay Forrester in 1959, the method
itself has been used for a broad spectrum of applications includ-
ing the modelling of complex ecological and economic systems
(Costanza and Gottlieb, 1998a; Costanza et al., 1998b; Costanza

and Voinov, 2001), many of which address, to some extent, the
social implications of system behaviour (Wu and Marceau, 2002;
Bossel, 2007; Ford, 1999a). A system dynamics modelling approach
was chosen for this research given its proven ability to go beyond
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Fig. 1. An illustration of the system dynamics modelling process.

he inherent limitations of linear and static models to include the
ynamic interactions between factors at play in an interconnected
ystem (Richmond, 2001; Sterman, 2000; Wolstenholme, 1982;
eadows, 2008; Walters and Javernick-Will, 2015).
System dynamics modelling generally takes on two complimen-

ary forms: qualitative modelling,  where the end goal is to develop
ausal loop diagrams (CLD) that represent dynamic factor inter-
ction (Wolstenholme, 1990; Luna-Reyes and Andersen, 2003);
nd quantitative stock-flow (SF) modelling, where the end goal is
o model and simulate the dynamic effects of factors and their
nteraction. In many cases, qualitative modelling is used to inform
ubsequent quantitative modelling and simulation with quanti-
ative modelling tools such as STELLA or VENSIM, serving as a
onceptual framework for the interaction of factors within an SF
odel (Wolstenholme, 1990).
The process for developing system dynamics models typically

ollows an iterative progression that begins with the clear expres-
ion of the modelling objective, and proceeds with identification
f factors and their dynamic interaction through polarity analy-
is and dynamic hypothesis casting and diagramming, followed by
odel simulation and interpretation. While the merging of quali-

ative and quantitative modelling can greatly enhance the utility
nd explanatory power of a system dynamics model, a formal
ramework that merges these approaches does not exist (Luna-
eyes and Andersen, 2003; Wolstenholme, 1999; Pruyt, 2013).
hus, we present a five-step modelling process using a combi-
ation of recommended modelling processes from Pruyt (2013),
ased on Richardson and Pugh (1981) and others (Forrester, 1993;
olstenholme, 1990; Sterman, 2000), displayed in Fig. 1.
In this process, the first three steps are primarily qualitative,

nd the latter two steps are primarily quantitative, where a unify-
ng step (Step 3) overlaps in the task of translating a CLD into an SF

odel format (Pruyt, 2013). Polarity analysis entails drawing factor
nteraction diagrams (CLDs) through which the dynamic interac-
ion between factors is hypothesized. CLDs are composed of arrows
causal influences) between factors and pair-wise factor polarities
epresented as positive (+) (i.e., an increase or decrease of one fac-

or causes an increase or decrease in the other factor) or (−), which
s the opposite of a positive influence (i.e., an increase or decrease
f one factor causes a decrease or increase in the other). Completed
LDs allow the identification of circular causality between factors

Fig. 2. An example of a Causal Loop Diagram (CLD) modelling population
delling 333 (2016) 51–65 53

known as feedback loops, processes or mechanisms, which are the
unit of analysis for dynamic behaviour (Richardson, 2011). Analy-
sis of feedback loop polarity provides insight into the root causes of
system behaviour, taking the form of either reinforcing loops (expo-
nential increase or decrease, typically indicated with an “R” in CLDs)
or balancing loops (restorative or goal-seeking, typically indicated
with a “B” in CLDs).

The structural interaction of factors within CLDs can enable the
building of SFs using the similar structure in combination with
parameterized variables to provide simulation using real world
data. A structural comparison between a CLD and an SF is shown
in Fig. 2, where the translation of the primarily qualitative CLD
to a quantitative SF form involves connecting factors into func-
tional parameters: stocks (squares), flows (valves) and converters
(circles), where the “stock and flow” model finds its name. Stocks
accumulate or discharge entities by inflows and outflows, similar
to water in a bathtub. It is through modelling the accumulation
or discharge within a stock that simulation of dynamic behaviour
becomes possible. Converters are used in various capacities to
invoke weighted influences, mathematical influences, or simply
maintain unit consistency, and are often placed by the modeller
to make certain influences and conversions explicit. An SF model
simulation in many different forms offers a “virtual world”, through
which to analyze the relative influence and impact of factors on
model behaviour through sensitivity analyses, or determine how
feedback structure influences behaviour using loop dominance
analysis (Richardson, 1984; Ford, 1999b).

A notable weakness with system dynamics modelling is the
difficulty, if not futility, of model validation based on how
model outputs and behaviour accurately represent the real world
(Mohapatra et al., 1994; Bossel, 2007; Vennix, 1996; Mirchi et al.,
2012; Sterman, 2000). With system dynamics modelling there are
two primary validity concerns: “construct validity” (a gap between
the problem that is modelled and the model itself), and “internal
validity” (the influence between these variables is not true-to-life)
(Olivia, 1996; Barlas, 1996). In light of these validity concerns, the
system dynamics modeller must ask the question: How likely is it
that the factors chosen to represent the system actually describe
the real problem or system behaviour (e.g., construct validity)?
Furthermore, how likely is it that the assumed factor interactions
represent how factors truly interact (e.g., internal validity)? In
most cases, no feasible means exists to definitively answer ques-
tions of this nature for system dynamics models. To attest to this
truth, many systems modelling experts argue that assessing the
true validity of model structures is not feasible (Forrester, 1962;
Forrester and Senge, 1980; Barlas, 1996; Sterman, 2000; Coyle and
Exelby, 2000), largely a result of not having access to proper data
(Mirchi et al., 2012). In spite of these challenges, the prevailing
view of systems modelling experts is that model validity should
be assessed based on its “usefulness with respect to some purpose”
(Barlas, 1996, p.186). In other words, the real benefits from systems

modelling is manifest in the form of useful information that may be
gained by engaging in the modelling process itself, where knowl-
edge gained by the modeller(s) for how system structure influences
behaviour is far more important than obtaining a “correct answer”

 dynamics (left) and the associated Stock Flow (SF) diagram (right).
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Bossel, 2007; Vennix, 1996; Box and Draper, 1987). However, in
rder for system dynamics models to operate as tools for decision
akers, the modeller must still be able to explain and rational-

ze the interrelationships between factors and sub-systems (Mirchi
t al., 2012). Accordingly, in this study we rigorously develop the
tructural relationship between factors by exploiting the benefits
f both qualitative (hypothesized structure) and quantitative (sim-
lated structure) system dynamics modelling approaches.

In this study, we follow the model building and analysis process
resented in Fig. 1, using a modified framework shown in Fig. 3,
pecifically tailored to model the dynamic processes within the
gricultural production systems. First, to hypothesize the prelimi-
ary structure of our model, we used interviews with agricultural
roducers to identify key drivers for particular decisions within
arying types of agricultural production systems in northeastern
nd southeastern United States (Sassenrath et al., 2010; Halloran
t al., 2011). Then, using these data, we develop a CLD that depicts
ow the interviewed producers implicitly or explicitly indicated
ow these drivers influenced each other. We  then use this CLD to
evelop the structure of an SF systems dynamics model, which we
arameterize and simulate using field data for three predominant
roduction systems (one-enterprise systems: row crops, extensive

ivestock, and mixed systems: integrated crop and livestock). The
ualitative and quantitative outputs of both the CLD and SF mod-
ls are then used to evaluate sustainability based on indices of
conomy, environment, and social welfare.

.2. Data sources and collection

In this section, we detail the types of data we used, and the
ollection methods employed to gather these data. We  begin by
escribing the qualitative data gathered in the form of farmer opin-

ons that we used to build a CLD, and then proceed by discussing
he type of data used to parameterize an SF model.

.2.1. Producer interviews
The first step of this research was to gather data in the form of

roducer opinion to identify important drivers of farming practices
n sustainable production. To accomplish this task, we used data
ollected by Sassenrath et al. (2010) in the form of interviews with
gricultural producers in Orono, Maine, and Auburn, Alabama, to
dentify information on the drivers that influence the management
hoices farmers make with their farming practices. Farmers who
articipated in these interviews had a diverse range of farming
nterprises (i.e., crops, livestock, integrated farming), farm sizes,
rop types, production and marketing strategies, and growing prac-
ices (e.g., organic versus nonorganic). The rationale for this large
ange was to compare and contrast common principles, criteria,
nd indicators that exist across these two physiographic regions of
rono, Maine and Auburn, Alabama (Sassenrath et al., 2010).

In the interviews, producers were asked two overarching ques-
ions: How do factors most influence your long-range production
ecisions?; and What aspects of your operation will you change

n the next 5 years? We  then used a coding analysis of meeting
otes and recordings to identify a set of similar drivers mentioned
y producers to delineate these drivers into four specific areas:
ocial/political quality, economic, environmental and technologi-
al, defined in Table 1 (Hanson et al., 2008). Many of these drivers
ere then used to construct the CLD.

.2.2. Stock-flow model parameterization
The interaction between important drivers identified through
he producer interviews allowed us to build and parameterize an
F model. The model was parameterized with information from
he upper Midwest for the three predominant crops in the region
corn, soybeans and wheat) and one animal system (cow/calf).
delling 333 (2016) 51–65

For the three crop types, we parameterized yields, tillage impacts
on crop yield, crop production costs, and labour, based on data
from field research conducted at the Swan Lake Research Farm
near Morris, MN  (Archer et al., 2007; Archer and Reicosky, 2009).
Livestock production costs and weaning rates were parameterized
based on Minnesota Farm Business Management records for West
Central Minnesota from 2006 to 2008 (Center for Farm Financial
Management, 2010). We  based crop price distributions on de-
trended 1989–2008 Minnesota cropping season annual averages
(NASS, 2009), using fertilizer prices from 2005 to 2008 average
prices for the North Central U.S. (NASS, 2009). To serve as a proxy
for soil quality, we used soil conditioning index factors from the
Soil Conditioning Index Worksheet (NRCS, 2003). Grain and for-
age nutrient content, and cattle nutrient requirements were then
parameterized based on NRC (2000) values for total digestible
nutrients (TDN), where forage production was based on 1998–2007
Stevens county alfalfa yields (NASS, 2010), and grazing utilization
was assumed to be 50 percent.

2.3. Model development

In the following section we  describe the model building steps
in detail to show how both the qualitative and quantitative model
were built through the process of conceptually mapping impor-
tant drivers (CLD diagramming), and then model building using the
aforementioned parameters (SF modelling). We  also outline and
define the important characteristics of model inputs and drivers.
For an overview of all SF model parameter values and meanings
inputs, the reader is referred to Table A1 in the Appendix.

2.3.1. Qualitative systems (causal loop) diagramming
A causal loop diagram (CLD) represents the systems-based

conceptual framework characterizing the dynamic drivers of a
particular behaviour. Using the drivers and their influences sum-
marized in Table 1, we created the CLD shown in Fig. 3 using Vensim
PLE (Ventana Systems, Harvard, MA). Here we focused on the most
fundamentally important overarching drivers for sustainability
found through the producer interviews, namely: Environmental
Quality, Economics,  and the tie between Livestock Production,  Crop
Production and Social Quality (shown in bold in Fig. 4). In order to
create logical ties between certain producer-referenced drivers, we
opted to add a few additional intermediary drivers. For example,
we indicate values related to livestock production constraints and
considerations such as herd size, available feed, and animal nutrient
demand. While many of the drivers in Fig. 4 are relatively self-
explanatory, it is worth mentioning a few that are not so obvious.
For example, we intend the significance of tillage practices as an
indicator of the level of tillage intensity as encompassed by the
methods used to till the land, as well as the frequency with which
tilling practices are employed. Additionally, soil quality, a driver
that is linked to the main driver Environmental Quality (Table 1)
is influenced by tillage practices, manure input, forage biomass, and
plant nutrient demand. Soil quality is the output of these drivers,
and is described using the soil conditioning index (SCI), described
in the parameterization process.

As described in the CLD (Fig. 2) influence polarities are either
positive (+) or negative (−). An example for how these influ-
ence polarities were ascertained can be seen with the connection
Herd Size (−) → Available Feed. As the number of head of cattle
increase, the feed available to meet the caloric demands of the
cattle would be expected to decrease. Similarly, social quality is
impacted by the amount of time workers have to work, thus Live-

stock labour (−) → Social Quality, indicating that as labour increases,
social quality decreases. An example of a positive polarity influ-
ence exists between Economics (+) → Acreage, where an increase
in economics would enable an increase in funds to purchase more
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Hypothesize
Preliminary Model

Structure
Build CLD Model

Perform Polarity
Analysis

Build SF Model

Assess
Sustainability

Simulate SF Model

Parameterize Model
with Field Data

Fig. 3. The framework for agricultural production systems modelling with system dynamics implemented in this study.

Table 1
Emergent drivers and their definitions from the Sassenrath et al. (2010) study.

Driver Sub-driver Definition Unifying model parameter Influenced by parameter

Social Quality

Lifestyle Farming as a way of life with deep
roots in family and heritage

Social Quality (Time;
Protein)

Crop Labour
Livestock labour
Crop produced
Meat produced

Old vs. New Contrast between old and new
generational strengths, weaknesses,
change, risk, influence on diversify,
acceptance on new ideas

Commitment to
community

Local support and relationships, the
influence this has on regional identity,
breadth of crop selling and marketing
channels

Environmental
stewardship

Precedence of environmental
preservation both locally and globally
through production practices

Acquisition and use
of information

The use (and acceptance) of available
information to make decisions on
strategic crop selection and
diversification

Feelings on policy Aversion and concerns, activity, in
government policy, involvement in
policy decisions

Economic
Risk Management Acknowledgement and appreciation of

risk, and mitigation of risk through
crop and livestock diversification, or
support through government policies

Livestock Production
Crop Production

Herd size
Soil quality
Manure applied to crops
Acreage

Marketing output
and net return

Marketing channels, and influence this
has on crop types inventories based on
demand)
Influence over market prices

Economics Supplemental Feed demand
Nutrient demand costs
Crop Yield
Tilling Costs
Manure application to crop
cost
Livestock sold

Farm size The influence of farm size on
production strategies

Acreage Economics

Environmental Quality

Soil type and
topography

Rocky vs. steep vs. flat, erodible vs.
non-erodible, nutrient-rich vs. nutrient
poor

Environmental Quality

Nutrient demand
Forage biomass
Tillage practices
Manure producedCover  crops The use of ground cover to improve

soil organic matter
Geographic
distribution

Distribution of population centres and
the influence on marketing options

Pests Crop damage due to the presence of
pests

Technology
Education The use of university, extension and

federal scientists to expand knowledge
on farming techniques

Tillage practices Acreage

Mechanization Implementation of new mechanized
technologies to improve production

Internet Exploitation of internet benefits to
follow price trends, markets and to
establish marketing channels
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ig. 4. CLD of production drivers (principle drivers are in larger bolded font). The p
rrow  linking the two  parameters, e.g., Animal Diet (+) → Beef Protein Produced.

creage. Each of the influences in the CLD were created using this
ationale. To complete the CLD required making important and dif-
cult assumptions regarding the polarity of influence between the
rivers: acreage on nutrient demand, acreage on tillage practices,
nd tillage practices on crop labour,  and the associated effect on
nvironmental Quality. Here we assume, that as acreage increases,
utrient demand (taken here as the amount of nutrients (i.e., N and
) required by a crop at the farm level) would go up, implying a
ositive (+) polarity. In addition, as acreage increases, the amount
f land to be tilled also increases, implying a positive (+) polarity of
nfluence on tillage. Increases in tillage practices including increas-
ng tillage intensity and frequency would increase the amount of
rop labour required, implying a positive (+) polarity of influence
n crop labour.  Assigning the polarity of influence between each
odel variable in this way  allowed for the creation of a final CLD.

.3.2. Quantitative systems (stock-flow) modelling
We used the CLD in Fig. 4 as a structural guide for the construc-

ion of an SF model developed in STELLA (isee Systems, Lebanon,
H). The complete STELLA SF model that resulted is shown in Fig. 5.
imilar to the CLD, it was necessary to add additional converters
noted as small circles in the SF model) to explicitly portray impor-
ant formulas and parameters used to designate driver influences.
ue to the size and complexity of this SF, we have demarcated

he model into subsystems called “sectors”, to compartmental-
ze key model modules used to subsequently evaluate production
ystem sustainability. The model was logically broken into five sec-
ors to provide a clearer and cleaner representation of the major
rivers outlined in the CLD: Environmental Quality, Social Quality,
conomics, Livestock Production,  and Crop Production.  In order to
ectorize the STELLA model into these sub-systems, it was  nec-
ssary to create numerous “ghosts” for both stocks (signified by
ashed boxes) and converters (signified by dashed circles), which
epresent shared model components between sectors.

As SF models are inherently quantitative, it was necessary to
umerically define each of the model parameters, through for-

ulas, direct numerical values, or normalized graphical functions.
raphical functions are useful tools within STELLA to invoke non-

inear relationships or trends between two variables in place of hard
umerical data. In the appendix, we present each type of model
e (+) or negative (−) impact of a practice on a factor is indicated at the head of the

parameterization, both for formulas, numerical data (Table A1), and
graphical functions (Fig. A1). We  present a definition for each of the
five sectors below, where a full summary of model parameters is
presented in Table A1.

2.3.2.1. Crop production. In this model, the Crop Production compo-
nent models production of three crops: corn, soybeans, and spring
wheat. In the model, crop production is driven by Target Yields for
each crop, where actual yields are influenced by tillage practices,
and by changes in soil quality parameters (SoilPAmm,  SoilDistRate,
etc.). Target yields are used to calculate nutrient (N and P) demands,
which are then used to calculate fertilizer and manure applications
in the Economics and Environmental Quality sectors. Additionally,
crop residue production (ResAmt, Residue, and TotResGraz)  is calcu-
lated from grain yields using a separate harvest index for each crop,
where residue production is linked to the Livestock Production and
Environmental Quality sectors.

2.3.2.2. Livestock production. The Livestock Production sector is
modelled as a “cow-calf enterprise”, where herd size is determined
over time by the influence of reproduction rates (WeanRate)  and
limited by available feed (AvailFeed). Increases in herd size are
calculated as the number of females in the herd (NumFemales) mul-
tiplied by the weaning rate per female. Animal sales are calculated
based on available feed with excess animals sold when feed demand
exceeds a user-determined maximum percentage of available feed,
and additional animals are retained when feed demand falls below
the minimum percentage of available feed (minFeedUse). Available
feed is calculated based on animal diet, which is modelled on a
Total Digestible Nutrients (TDN) basis. Supply of TDN is calculated
as the sum of available TDN from dedicated grazing land (pasture
or range), crop residues, and supplemental feed (the stock Supple-
ment). Demand for TDN is calculated based on herd size (HerdSize),
which is also used to calculate manure production (ManureStock).
ManureStock is directly linked to the environmental quality and
economics sectors and indirectly (through nutrient balance and

soil quality impacts) to the crop production sector. A social feed-
back factor (SocPres) is included to force herd size reductions when
manure production and utilization get out of balance (explained in
more detail under Section 2.3.2.5).
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Fig. 5. SF model with each sector labelled. Full details of parameters are given in Appendix Table A1.
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.3.2.3. Environmental quality. The Environmental Quality sector
odels three environmental indicators: excess manure production,

xcess nutrient use, and soil conditioning index. The Soil Condition-
ng Index (SCI) considers the dynamics of soil conditions based on
illing practices and soil organic matter (NRCS, 2003). In particu-
ar, the SCI considers the availability (or dearth) of organic matter
OrgMatFact), field operations based on the frequency and ferocity
f soil disturbance (FieldOpFact), and soil erosion (ErosionFact). In
he model, Nitrogen (NIndex) and Phosphorus (PIndex) indices are
sed to represent fertilization and manure, which is animal waste
roduced in excess of that which can be used on-farm.

.3.2.4. Economics. The Economics sector models wealth variabil-
ty (stock Wealth)  over time as influenced by crop and livestock
roduction, AnimalsToIncome and CropIncome, respectively, where
nnual flows into wealth include crop and livestock sales. Annual
ows out of wealth include Crop and livestock (Animal) production
xpenses. Crop production expenses are itemized, including costs
or: irrigation (IrrigationCost),  chemical (ChemCost,  pesticides),
illage (TillageCost), manure application (ManAppCost), fertilizer
CostFert), and other associated management operations. Irrigation,
illage, and chemical costs were entered as a constant cost per
cre for each crop. Manure application cost is constant per unit of
anure applied, while fertilizer costs are tied directly to nutrient

emand, with fertilizer applied based on target yields. We  consider
 “manure credit” to exist for any manure that is applied to the
rop in place of purchased fertilizer. Manure credit is subtracted
rom total nutrient demand in calculating fertilizer costs. All other
rop production costs are included as a constant cost per acre for
ach crop.

Livestock production expenses include grazing land charges
GrLandChrg) and costs of purchased supplemental feed (Supple-
entPrice). We  consider all livestock production costs as a constant

ost per animal, and supplemental feed purchases are reduced by
eeding a portion of the crops produced on-farm. However, this also
educes crop sales and crop income. All animals in excess of what
an be supported by available feed are sold each year. The current
arameterization assumes a cow-calf system; however, calves and
ull cows are not tracked separately, so revenues from animal sales
re on a generic value per head basis.

.3.2.5. Social quality. The Social Quality sector models aspects of
roduction internal and external to farming. The internal social
alue of time is based on hours required to perform crop (CropHrs)
nd animal management practices (AnimalHrs), where the exter-
al social value models the caloric value of the production output
TotProtein). We assume increasing labour reduces the flexibility of
he farmer to spend time on leisure pursuits, and thereby decreases
ocial quality. As an external social quality, we use the net protein
roduced per acre, representing societal concern for adequate food
uantity and quality. Although not modelled directly as a social
uality indicator, the previously mentioned social feedback factor
SocPres) is included in the model that links excess manure pro-
uction to livestock herd size limits. This factor serves as a proxy
or the influences excess manure may  have on social perceptions
e.g. due to odour or impacts on visual amenities) and the potential
eedback of these perceptions on livestock production (e.g. through
eer pressure, zoning, or other regulations). This factor ranges from

 to 1 and can be adjusted to represent different levels of social
ressure resulting in restrictions on manure balance or indirectly
n animal production. When the factor is set to 0, manure balance

as no effect on herd size. Increasing the factor puts tighter bounds
n manure balance. When the factor is set to 1, manure production
nd utilization must strictly balance each year or herd size must be
educed to bring utilization and production back into balance.
delling 333 (2016) 51–65

2.4. Model simulation and analysis: assessment of sustainability

We  performed separate analyses on both the qualitative (CLD)
and quantitative (SF) models. Our objective in analysing the CLD
was to characterize feedback loop polarity to improve the appli-
cability of the SF simulation outputs and findings. Regarding the
former, loop characterization was  the goal of these efforts, assum-
ing the relative number of reinforcing to balancing loops allows for
the understanding of driver sensitivity and importance and consid-
ering that each loop has the same strength. This awarded important
insight into relative driver importance on production sustainability
within the SF model. Analysis of the SF model involved running
model simulations and evaluating the outputs of the environmen-
tal, social, and economic indices used to determine sustainability.

Conducting the loop balance analysis using the CLD model
entailed systematically identifying and characterizing feedback
loops involving the key model drivers: Environmental Quality, Social
Quality, Economics,  Livestock Production and Crop Production.  We
used the “Loops” tool in VENSIM to identify feedback loops involv-
ing these key parameters. We  then summed the combined polarity
for each feedback loop, noting that an odd sum of negative polar-
ity influences indicates a balancing loop, whereas an even sum
indicates a reinforcing loop (Richardson, 1984). Through this com-
parison between reinforcing and balancing loop, it was possible
to compare each of these five drivers in terms of their relative
stability, assuming that a higher difference between reinforcing
and balancing loops would indicate a higher instability or stability,
respectively.

To perform the SF model simulations, we  first assumed a farm
size of 1200 acres. For Crop Only, the acreage was evenly divided
between corn, soybeans and spring wheat. Livestock Only simula-
tions assumed 1200 acres grazing land for the cattle herd, while
for the integrated crop/livestock simulation, 600 acres was  dedi-
cated to grazing lands and the remaining 600 was  equally divided
between the three crops. The time horizon for each model sim-
ulated production over 100 years. Given the stochastic nature of
model outputs, each simulation was  performed 100 times, and
the output averaged. The social pressure parameter (SocPres) to
limit manure production was arbitrarily set as 0.5. Additionally,
for stocks that accumulated (wealth and manure), the yearly pro-
duction was  averaged. The average values for each index were then
normalized for comparison of sustainability between the different
production system scenarios.

3. Results and discussion

This section discusses the findings from our qualitative and
quantitative systems modelling analyses. As previously mentioned,
insight from these modelling efforts are deduced by two dis-
tinct means: first by analysing loop polarity characteristics of
model drivers using the CLD alone, and second, through analy-
sis of SF model outputs using sustainability indices. Finally, we
discuss implications from the combined insight of these two  anal-
yses, along with future research that leverages these findings and
research methods.

3.1. CLD loop polarity analysis

Direct comparison between loop polarities for key model
parameters allowed for the assessment of driver sensitivity and
stability based on the relative difference between the number of

reinforcing and balancing loops. In Table 2, we  present a semi-
quantitative overview of loop polarity for Environmental Quality,
Social Quality, Economics,  Livestock Production,  and Crop Production,
with the values of interest being the difference between the number
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Table  2
Loop polarity analysis results for each driver.

Driver Num. reinforcing(+) Num. balancing(−) Total loops Difference Dominance

Environmental Quality 58 61 119 −3 Balancing
Social  Quality 43 50 93 −7 Balancing
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Economics 55 60 

Livestock Production 15 15 

Crop  Production 60 63 

f reinforcing loops and balancing loops that directly involve each
river. Evaluating the difference between the number of reinforcing
nd balancing loops for each driver revealed two  important conclu-
ions about driver influence on agriculture system sustainability.
irst, the absolute difference provides insight into driver stabil-
ty, where a high difference would indicate either a high stability
balancing) or high instability (reinforcing). Second, the relative
umber of loops, characterized by a negative or positive difference,
elps us assume the overall behaviour of each driver within the
LD; where a positive difference indicates the drive is dominated
y reinforcing loops (an overly unstable and potentially destruc-
ive influence); and a negative difference indicates the driver is
ominated by balancing loops (an overly stable and potentially

imiting influence). We  must again note that these analyses both
ssume each loop is of equal strength, and as such, potentially rep-
esents this complex system inaccurately. Despite the difficult task
f qualitatively analysing loop driver sensitivity, we considered
his inaccuracy worth the potential insight into agricultural sys-
em sustainability it provides when coupled with the quantitative
F model.

The polarity analyses in Table 2 indicates the difference in loop
olarities from largest to smallest are: Social Quality (−7), Eco-
omics (−5), Crop Production (−3), Environmental Quality (−3), and
ivestock production (0). Using the rationale for driver stability (or
ensitivity) mentioned previously, the largest positive and negative
oop differences imply a high potential for instability (reinforcing)
r stability (balancing). Based on our results, it appears that each
river would tend towards the latter, stabilizing or balancing out
ny reinforcing system behaviour. Put another way, each driver
apart from Livestock Production, which is neutral) would act to
imit exponential growth or decay in agricultural system behaviour,
e it economic gain, environmental deterioration, or social influ-
nce. This means the system, as we have interpreted it here in the
LD (Fig. 4), for either a single or mixed-enterprise system, would
ver time trend towards a stable production “state”, whether that
tate be favourable (sustainable) or unfavourable (unsustainable).
he most influential drivers of this behaviour would be Social Qual-

ty and Economics,  given their proportionately higher loop polarity
ifferences.

Richer information is available if we look at the nature of fac-
or interaction in the balancing loops surrounding these drivers.
ndeed, it was found that the drivers that predominantly limited
xponential increase or decay (reinforcing behaviour) in the sys-
em as a whole were Social Quality and Economics,  as one would
xpect, given the higher number of balancing loops for each of
hese drivers. Generally, balancing loops from Social Quality and
conomics appeared in the form of their reinforcing loop prede-
essor, with a main difference being the inclusion of cost and social
nfluence into each loop. For example, the limiting influence of Eco-
omics on Environmental Quality becomes evident in the balancing

oop:
nvironmental Quality (−) → Manure applied to crop cost (−)

→ Economics (+) → Acreage (+) → Crop Production (+)

→ Nutrient demand (−).
115 −5 Balancing
30 0 Neutral

123 −3 Balancing

which means: If Environmental Quality increases, the cost for
manure necessary to improve soil quality decreases, which
improves producer wealth, thereby enabling the producer to
purchase more land to produce more crops; however, as crop
production increases, nutrient demand also increases, in turn neg-
atively influencing Environmental Quality. Similarly, an example of
the balancing influence of social aspects on Economics loops is seen
here:

Economics (+) → Acreage (+) → Crop Production (+)

→ Crop Labour (−) → Social Quality (+) → Herds size (+)

→ Livestock Production (+) → Livestock Sold (+)

which means: While increased wealth would improve crop produc-
tion, increasing crop labour (i.e., time working) would adversely
affect Social Quality, and as a result, would limit herd size, and
adversely influence livestock production and any associated eco-
nomic gain. This tenuous influence of labour on social quality and
the corresponding effect on economic gain similarly exists with
livestock labour, in this alternative case decreasing crop production
and yield. Thus, we posit that the highest sensitivity (and greatest
influence) of model drivers on agricultural system sustainability in
general would be Social Quality.  Although it is difficult to deny the
influence of Economics on key aspects of agricultural production
system sustainability, Social Quality has the highest loop polarity
difference. This finding indicates that social aspects of agricultural
productions systems, while buffering against destructive outcomes
to environmental or economic sustainability, could conversely slow
down, or limit, long-term sustainability or success overall. Addi-
tionally, social influences were found to limit production within the
animal-crop nexus of mixed-enterprise systems, as shown above
where crop labour influences Social Quality,  which thereby influ-
ences herd size. This implies that the most influential driver on
mixed-enterprise system sustainability in particular could be social
sustainability.

3.2. SF model analysis

Simulating the three farming system scenarios enabled us to
compare and contrast the findings from the previously described
polarity analysis. This comparison is made using quantitative out-
puts from the SF model in the form of sustainability indices for
crop only, animal only, and integrated animal-crop agricultural pro-
duction systems. As a means to combine these key findings and
evaluate the sustainability of each of these three agricultural sys-
tems, we present a radar chart (Fig. 6), which shows index values
for the key model parameters and drivers influencing the sustaina-
bility indices, i.e.,: time and protein [social]; wealth [economic]; and
SCI, Manure, P-Index, and N-Index [environmental].

Through a simple assessment of these indices (where higher
values are more favourable) we  find the greatest economic sus-
tainability would result from Crops and Animals, second being

Crops and last being Animals Only. We  can logically deduce that
given the economic benefits of cost and productivity, and the poten-
tial for resource sharing for integrated production systems (i.e.,
Crops and Animals), that the likelihood of higher wealth would
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Table  3
Sustainability Index ranking.

Production system Social (protein and time) Environmental (SCI) Economics (wealth) Ranked Sum

Crops only 1 3 

Animals only 2 1 

Crops and Animals 3 2 
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social factors in a measurable analysis system. Of particular note is
Fig. 6. Summary of sustainability indices and key model parameters.

e far greater. In contrast, given that we designate time as a sur-
ogate for internal Social Quality, Crop and Animal systems have

 drastically lower internal social quality index, due to the inher-
ntly time-intensive activities of managing two distinct production
nterprises. However, Social Quality also includes the amount of
otal protein produced as an external social benefit from the pro-
uction system. For social sustainability, the highest combined
rotein and time exists for the Crops Only production system. While
his may  be initially surprising, based on our model assumptions of
and suitable for crop production, it is possible to produce more
egetable protein (especially with soybean) per acre than live-
tock protein. However, this would ultimately depend on the mix
f land available. On the contrary, if some of the land is unsuit-
ble for crop production, then a mixed system might produce more
otal protein. It is important to note that this does not take into
ccount social views of protein quality, where generally as living
tandards improve, diets move towards greater amounts of meat
rotein instead of plant proteins. Nor does it account for the total
utritional value of food needed to support optimal human health.

For environmental sustainability, both Crops Only and Crops
nd Animals have relatively similar environmental indices for N
nd P. However, the resultant SCI is substantially greater for Crops
nd Animal agricultural production since manure is incorporated
n this integrated system, using the excess production of manure
o increase soil organic matter and reducing the need for supple-

ental fertilizer applications. Additionally, less land would be tilled
s more land would be used for grazing. Animal production sys-
ems have N and P values at null because accumulated manure is
ot specifically applied to crops and is instead disposed of. Despite
aving no N and P, Animals Only overall had the highest SCI, since
rosion and tilling would be minimal, and available organic matter
n the soil would likely remain unchanged.

To determine the combined sustainability of the three agri-
ulture systems analyzed here, we conclude with an overview of
ustainability based on a simple ranking of each sustainability index
n Table 3. First, environmental sustainability (based on the SCI) was
ound to be the greatest for Animals Only, second for Crops and

nimals, and last for Crops Only. Thus, Animals Only has the great-
st environmental sustainability, yet was found to have the lowest
conomic sustainability (based on wealth gained). Mixed systems
2 6
3 6
1 6

(Animals and Crops) were found to have the highest economic sus-
tainability and relatively high environmental sustainability, but in
agreement with the previous polarity analysis, have the lowest
social sustainability due to proportionately higher time it would
take to run the farm. Crop Only systems had the highest social sus-
tainability overall and compared well with the other sustainability
indices. Table 3 shows the sum of ranks for each sustainability index
for each agricultural production system have an equal potential for
sustainability. However, we  showed through polarity analysis that
social sustainability is likely the most influential on overall produc-
tion system sustainability, especially for mixed-enterprise systems.
Thus, given that each production system received an equal score, it
would appear Crops Only systems are the most sustainable overall.

These findings are intriguing, as integrated crop enterprises
have been regarded by many as a promising means to address
economic and environmental challenges in sustainable food pro-
duction (Hanson et al., 2008; Hendrickson et al., 2008). On the
contrary, our results imply this may  not be the case if one con-
siders the interwoven social drivers – particularly producer leisure
time – that could influence overall agricultural production system
sustainability. Apart from the inclusion of social drivers, however,
there are assumptions made within our model that may  have
favoured Crop Only systems based an optimistic consideration of
soil quality and land use. For example, our model considers each
acre of land is used to its full capacity for crop production. How-
ever, in the common case where a section of farmland has poor soil
quality, forcing crop production would likely imply a lower crop
production, and thus, a lower economic benefit due to the higher
cost of nutrient inputs. Had this case been modelled, the associ-
ated rating for economic sustainability would have been lower,
thereby favouring the Crop and Animals or Animals Only enter-
prise scenarios. Additionally, it is possible that forcing crop growth
in nutrient-poor soil could actually have detrimental impacts on
environmental sustainability per a lower SCI, in turn resulting in
a lower environmental sustainability rating. In the case of variable
soil quality, a more economically and environmentally sustainable
option would be a mixed enterprise system (Crops and Animals)
to utilize land with low quality soil for livestock, or, in situations
where soil quality is uniformly poor, a livestock only production
system (Animals Only). While our model does not explicitly con-
sider the effects of poor soil quality, and thus variability in viable
cropland, future systems models that do include parameters of this
type could greatly improve the quality and utility (i.e., validity) of
our model through future model calibration activities.

4. Conclusions

This paper demonstrates progress in farming systems modelling
through the use of system dynamics modelling. The model afforded
exploration of driver interactions within three distinct production
systems (Crops Only, Animals Only, and integrated Crop and Ani-
mal  systems), and determined the relative impact of management
inputs and drivers on sustainability indices. An exciting observation
of this systems study was its potential to capture elusive, qualitative
the impact social quality parameters play on the potential sustaina-
bility of production systems. We  believe information in this form,
gathered from the systems paradigm, can be used to develop and



al Mo

e
a
u
s
a

m
c
i
d
m
T
t
o
a
o
s
m
a
d
C
a
e
p
v

e
f
o
i
d
e
g
fi
a
h
i
A
t
t

fi

J.P. Walters et al. / Ecologic

valuate more economically, environmentally and socially accept-
ble production systems. As measured by the sustainability indices
sed here, single-enterprise crop production systems are more
ustainable than single enterprise systems consisting of livestock
lone, or mixed-systems with crops and livestock.

Analysis of the qualitative and quantitative system dynamics
odels provided two distinct forms of information to arrive at these

onclusions. Analysis of the CLD (Fig. 4) provided quasi-quantitative
nsight into factor sensitivity, highlighting the dynamic influences
emonstrating that the Social Quality driver would likely be the
ost influential on production system sustainability and success.

his dynamic information provides rich insight into the aspects
hat cause potentially destructive reinforcing feedback behaviour,
r conversely, stabilizing balancing behaviour. However, while this
nalysis can give us an idea of the drivers that are most stable
r sensitive, this metric does not show the relative dominance or
trength of the feedback loops and therefore can only provide a
eans to superficially assess stability, without knowing the rel-

tive strengths between internal drivers and sub-drivers of loop
ominance. Additionally, it is not possible through direct analysis of
LDs to explicitly assess sustainability of single or mixed-enterprise
griculture production systems based on our metrics of economics,
nvironment and social factors. Therefore, a quantitative analysis
rovided through an SF perspective was indeed a necessary and
aluable compliment to this study.

The SF model (Fig. 5) allowed for quantitative assessment of
conomic, social, and environmental sustainability for all three
arming systems. In doing so, we were able to successfully meet the
bjectives of this study by elucidating the systemic and dynamic
nteraction of drivers that influence sustainable agricultural pro-
uction. In addition, through SF modelling, it was possible to
valuate which agricultural system was most likely to have the
reatest social, economic and environmental sustainability. The
ndings from these modelling efforts, while allowing us to arrive
t conclusions that are relatively intuitive (i.e., Animals Only will
ave the least negative environmental impacts on soil), also made

t possible to arrive at less intuitive conclusions (i.e., Crops and
nimals are less socially sustainable but most economically sus-

ainable). Through this systems analysis, we were able to discuss

hese complex systems in a way that support these intuitions.

Other equally, if not more important, questions arise given the
ndings from this study. As we now have a systems model that
delling 333 (2016) 51–65 61

represents agricultural system complexity, and now know explic-
itly, through qualitative analysis, of the existance of many feedback
loops driving dynamic behaviour, the next question becomes:
which of these feedback loops is the most impactful or “domi-
nant”? Digging deeper into model variables, what are the most
important drivers of economic, social, and environmental sustaina-
bility? While analyses that specifically answer these questions
are not presented here, future research will benefit the body of
knowledge dedicated to agricultural production sustainability by
further investigation of these most impactful drivers and feed-
back loops. This may  be accomplished through further analysis of
this study’s findings using methods such as feedback loop domi-
nance analysis (Richardson, 1984; Ford, 1999b). In addition, future
research would complement this study by working through group
model building exercises with producers to ensure the subjec-
tivity of these models, on the part of the researcher, is minimal
(Vennix, 1996).

Future research efforts could improve model utility and appli-
cability by calibrating model parameters and links through, for
example, the inclusion of variability in model parameters for soil
quality and land use, and a more detailed measure of produc-
tion for human nutrition. Moreover, future modelling efforts could
be particularly impactful through examination of production sys-
tems for other regions of the US and the world, to compare
and contrast the relative economic, environmental, and social
impacts of management decisions and degree of integration on
production system sustainability. We  believe a willingness by pol-
icy makers and producers to utilize similar modelling efforts in
the future will improve understanding on the important drivers
influencing agricultural system productivity and environmental,
social and economic sustainability, and enable the creation of
more adaptable and responsive management practices and pro-
duction strategies for truly sustainable agricultural production
systems.
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Appendix.

Fig. A1. Graphical functions used in the Stock Flow model.
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Table  A1
Stock Flow Model Parameter Summary.

Parameter Value Unit Meaning

Initial stock conditions
HerdSize 350 Heads Size of the herd at start of model
Wealth 150,000 $USD Amount of money at start of model
Manurestock 0 lbs Accumulation of Manure produced by animals
Crop
InitAc[corn] 200 acre Initial area of corn production
InitAc[Soy Bean] 200 acre Initial area of soybean production
InitAc[Spring Wheat] 200 acre Initial area of spring wheat production
TargetY[Corn] 160 bu/ac Target yield for corn
TargetY[Soy Bean] 45 bu/ac Target yield for soybean
Target[Spring Wheat] 55 bu/ac Target yield for spring wheat
YieldVar[Corn] 14 bu/ac Standard deviation of corn yield
YieldVar[Soy Bean] 5 bu/ac Standard deviation of corn yield
YieldVar[Spring Wheat] 5 bu/ac Standard deviation of corn yield
CornSoyCorr 0.8 Correlation coefficient for soybean and corn yield
CornWheatCorr 0 Correlation coefficient for wheat and corn yield
SoyWheatCorr 0 Correlation coefficient for soybean and wheat yield
HarvestIndex [Corn] 0.5 Harvest index for corn (portion of above ground biomass that is grain)
HarvestIndex [Soy Bean] 0.4 Harvest index for soybean (portion of above ground biomass that is grain)
HarvestIndex[Spring Wheat] 0.42 Harvest index for spring wheat (portion of above ground biomass that is grain)
TOvarY
Livestock
ToGraz[Corn] 0.4 lbs Portion of corn crop residue that is grazed
ToGraz[Soy Bean] 0 lbs Portion of soybean crop residue that is grazed
ToGraz[Spring Wheat] 0.4 lbs Portion of spring wheat crop residue that is grazed
SupDays 90 day Days per year that supplement is required
maxFeedUse 1.10
PropFemales 0.95 Proportion of livestock herd that are females
Ansize 0.2 Qualitative factor for size of each animal, used to adjust feed use per animal
GrAcreage 600 acre Grazing land area
LTMeanProd 7640 lbs/ac Long-term mean forage production
SupTDN 0.61 Total digestible nutrient content of supplement feed to cattle
ForAvailGraz 0.7 Portion of forage production that is available for grazing
LTSDProd 860.0 lbs/ac Long-term standard deviation of forage production
TotSup 800,000 lbs Total supplement available
Use Supplemental Feed? Enables or disables use of supplemental feed
Economic and social
TillageUnitCost[Corn] 79 $/ac Machinery operation cost for corn production
TillageUnitCost[Soy Bean] 79 $/ac Machinery operation cost for soybean production
TillageUnitCost[Spring Wheat] 69 $/ac Machinery operation cost for spring wheat production
IrrigCost[Corn] 0 $/ac Irrigation cost for corn production
IrrigCost[Soy Bean] 0 $/ac Irrigation cost for soybean production
IrrigCost[Spring Wheat] 0 $/ac Irrigation cost for spring wheat production
AvgCropPr[Corn] 2.92 $/bu Corn crop sale price
AvgCropPr[Soy Bean] 7.5 $/bu Soybean crop sale price
AvgCropPr[Spring Wheat] 5.12 $/bu Spring wheat crop sale price
CropPrVar[Corn] 0.629 Standard deviation of corn price
CropPrVar[Soy Bean] 1.42 Standard deviation of soybean price
CropPrVar[Spring Wheat] 1.03 Standard deviation of spring wheat price
CropSupRate[Corn] 0.06 Maximum portion of corn grain used as livestock supplement
CropSupRate[Soy Bean] 0.01 Maximum portion of soybean grain used as livestock supplement
CropSupRate[Spring Wheat] 0 Maximum portion of spring wheat grain used as livestock supplement
ChemUnitCost[Corn] 22 $/ac Pesticide cost for corn production
ChemUnitCost[SoyBean] 10.5 $/ac Pesticide cost for soybean production
ChemUnitCost[Spring Wheat] 10.5 $/ac Pesticide cost for spring wheat production
ProdUnitCost[Corn] 200 $/ac All other production costs for corn
ProdUnitCost[Soy Bean] 150 $/ac All other production costs for corn
ProdUnitCost[Spring Wheat] 110 $/ac All other production costs for corn
AnimalCost 270 $/head Animal production cost excluding feed
FerCostN 0.47 $/lb N Unit cost of nitrogen fertilizer
Supplement Price 0.05 Price of supplement purchased for cattle feed
FertCostP 1.15 $/lb P Unit cost of phosphorus fertilizer
GrLandChrg 26 $/acre Grazing land annual cost
ManCreditFact 0.90 Portion of manure nutrient content credited in calculating fertilizer demand
Cull  Price 600 $/head Sale price for livestock sold
ManAppCost 12.7 $/acre Cost to apply manure to crop land
CropAcResp 0 Crop acreage response factor, controls how rapidly crop area can be adjusted between

crops
SocPres 0.5 Social pressure factor, controls how sensitive the level of manure stockpiled is to social

pressures
Tillage  and environment
TillYieldFact[Corn] Function Effect of tillage on corn crop yield
TillYieldFact[Soy Bean] Function Effect of tillage on soybean crop yield
TillYieldFact[Spring Wheat] Function Effect of tillage on spring wheat crop yield
TYieldVFact[Corn] Function Effect of tillage on variation in corn yield
TYieldVFact[Soy Bean] Function Effect of tillage on variation in soybean yield
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Table  A1 (Continued)

Parameter Value Unit Meaning

TYieldVFact[Spring Wheat] Function Effect of ti
TillCostFact[Corn] Function Effect of ti
TillCostFact[Soy Bean] Function Effect of ti
TillCostFact[Spring Wheat] Function Effect of ti
TChemCostFact[Corn] Function Effect of ti
TChemCostFact[Soy Bean] Function Effect of ti
TChemCostFact[Spring Wheat] Function Effect of ti
TillLabFact[Corn] Function Effect of ti
TillLabFact[Soy Bean] Function Effect of ti
TillLabFact[Spring Wheat] Function Effect of ti
SoilOrgMod 1.0 Adjustme

organic m
GrFieldOpTa 0.96 Level of ti
ErosTable[Corn] 0.5 ton/acre Soil erosio
ErosTable[Soy Bean] 0 ton/acre Soil erosio
ErosTable[Spring Wheat] 0.5 ton/acre Soil erosio

 erosio

R

A

A

A

B

B

B

B

C

C
C

C

C

C

F

F

F

F
F

F

H

H

H

H

H

GrErosTable 0 ton/acre Soil
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