7 research outputs found

    Non-Aqueous K-Ion Battery Based on Layered K 0.3

    No full text

    Optimized hard carbon derived from starch for rechargeable seawater batteries

    No full text
    The recently introduced seawater battery concept is an eco-friendly energy storage system that offers appealing electrochemical performance. Its radically innovative design, compared to conventional lithium-ion batteries, makes use of seawater as an almost infinite sodium reservoir for the positive electrode and, thereby, avoids the use of expensive, scarce, and toxic elements like nickel and cobalt. So far, the problems identified mostly originate from the available negative electrode active materials. In this study, a starch-derived hard carbon was used to optimize the system. Due to its improved disordered structure compared with commercial hard carbon, the starch hard carbon exhibits an increased reversible capacity, current-rate capability, and cycling ability. The material, in fact, depicts a high maximum power density of 700 W kg(-1) (based on hard carbon weight) upon discharge at 900 mA g(-1), while still being active at 2700 mA g(-1). These results represent an important step toward practical application of the sodium-based seawater battery technology

    Hard carbons for sodium-ion batteries : structure, analysis, sustainability, and electrochemistry

    No full text
    Hard carbons are extensively studied for application as anode materials in sodium-ion batteries, but only recently a great interest has been focused toward the understanding of the sodium storage mechanism and the comprehension of the structure–function correlation. Although several interesting mechanisms have been proposed, a general mechanism explaining the observed electrochemical processes is still missing, which is essentially originating from the remaining uncertainty on the complex hard carbons structure. The achievement of an in-depth understanding of the processes occurring upon sodiation, however, is of great importance for a rational design of optimized anode materials. In this review, we aim at providing a comprehensive overview of the up-to-date known structural models of hard carbons and their correlation with the proposed models for the sodium-ion storage mechanisms. In this regard, a particular focus is set on the most powerful analytical tools to study the structure of hard carbons (upon de-/sodiation) and a critical discussion on how to interpret and perform such analysis. Targeting the eventual commercialization of hard carbon anodes for sodium-ion batteries – after having established a fundamental understanding – we close this review with a careful evaluation of potential strategies to ensure a high degree of sustainability, since this is undoubtedly a crucial parameter to take into account for the future large-scale production of hard carbons
    corecore