181 research outputs found
Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility
Phycoremediation is the use of algae for the removal or biotransformation of pollutants from wastewater. Employing this technology in the treatment of industrial effluents presents an alternative to the current practice of using conventional methods, including physical and chemical methods. In the present study, the effluent from a leather-processing chemical manufacturing facility, situated at Ranipet, Tamil Nadu, India, was treated using the microalga, Chlorella vulgaris, which was isolated from the effluent itself. The objective of this study was to treat the effluent as well as ETP (effluent treatment plant) solid waste by phycoremediation (pilot-scale field study as well as laboratory study) and to analyse the physico-chemical parameters before and after treatment. The results obtained showed that Chlorella vulgaris exhibited appreciable nutrient scavenging properties under both laboratory and field conditions, although phycoremediation carried out in sunlight (field study) gave better results. Moreover, the growth of Chlorella vulgaris was faster under field conditions.Keywords: Phycoremediation, microalgae, Chlorella vulgaris, effluent, ETP soli
Principles of meiotic chromosome assembly revealed in S. cerevisiae
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process
Effectiveness of Lumbar Transforaminal Epidural Steroid Injection in Patients with Radiculopathy - A Prospective Observational Study
Background: Lumbar radiculopathy is a common condition characterized by pain radiating from the lower back to the lower limb, with high prevalence rates in the Indian population.
Objectives: To evaluate the effectiveness of lumbar transforaminal epidural steroid injections in patients with radiculopathy.
Materials and Method: The present study included 31 patients with intervertebral disc prolapse and radiculopathy confirmed by MRI. Patients received lumbar transforaminal epidural steroid injection and were assessed at baseline, immediately after, and at 6, 12, and 24 weeks using Numerical Rating Scale (NRS), Oswestry Disability Index (ODI), and Patient Satisfaction Questionnaire-18 (PSQ-18). A statistically analysis was carried using the Friedman test and Post-hoc Wilcoxon signed rank test with p<0.005 as significant value.
Results: Numerical Rating Scale (NRS) scores decreased substantially from 6.81 to 3.45 immediately after the procedure and remained low at 6-12 weeks (3.42-3.74), with a slight increase at 24 weeks (4.23). Similarly, Oswestry Disability Index (ODI) scores improved notably from 44.19 to 29.16 immediately after the procedure and remained improved at 6-24 weeks (30.00-33.48). Patient Satisfaction Questionnaire-18 (PSQ-18), showed a brief improvement post-procedure (4.09) but returned to near baseline levels (3.97-4.01) over the long-term follow-up period. These findings were statistically significant, with p-values of 0.000 for NRS, ODI, and PSQ-18 scores over follow-ups.
Conclusion: Transforaminal epidural steroid injection is a safe and effective treatment for lumbar radiculopathy, providing short-term pain relief and functional improvement. However, long-term efficacy remains unclear, highlighting the need for further large-scale, long-term research to optimize treatment outcomes
Defects in Meiotic Recombination Delay Progression Through Pachytene in Tex19.1-/- Mouse Spermatocytes
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13 mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1 −/− . The appearance of early recombination foci is delayed in Tex19.1 −/− spermatocytes during leptotene/zygotene, but some Tex19.1 −/− spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1 −/− spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1 −/− testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect
Stochastic Models of Lymphocyte Proliferation and Death
Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of inter-division times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics
A Unique Modification of the Eukaryotic Initiation Factor 5A Shows the Presence of the Complete Hypusine Pathway in Leishmania donovani
Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N€-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of α-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A ∼42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed ∼40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite
Identification of QTLs controlling gene expression networks defined a priori
BACKGROUND: Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression. Since genes are also known to respond as groups due to their membership in networks, effective approaches are needed to investigate transcriptome variation as related to gene network responses. RESULTS: We describe a statistical approach that is capable of assessing higher-order a priori defined gene network response, as measured by microarrays. This analysis detected significant network variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and Shahdara. CONCLUSION: This approach has the potential to be expanded to facilitate direct tests of the relationship between phenotypic trait and transcript genetic architecture. The use of a priori definitions for network eQTL identification has enormous potential for providing direction toward future eQTL analyses
Erythroid-Specific Transcriptional Changes in PBMCs from Pulmonary Hypertension Patients
Gene expression profiling of peripheral blood mononuclear cells (PBMCs) is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression
Transcriptomic evidence for the control of soybean root isoflavonoid content by regulation of overlapping phenylpropanoid pathways
- …
