663 research outputs found

    Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension.

    Get PDF
    Increased physical activity is recommended for the general population and to patients of many diseases because of its health benefits but can be contraindicated if it is thought a risk for serious cardiovascular events. One such condition is pulmonary artery hypertension (PAH). PAH and right ventricular failure was induced in rats by a single injection of monocrotaline (MCT). MCT rats with voluntary access to a running wheel ran on average 2km per day. The time for half the animals to develop heart failure signs (median survival time) was 28 days (exercise failure (EF) group), significantly longer than sedentary animals (sedentary failure (SF) group), 23 days). The contractility of single failing myocytes in response to increasing demand (stimulation frequency) was significantly impaired compared with both sedentary control (SC) and exercising control (EC) myocytes. However, myocytes from exercising MCT rats, tested at 23 days (EM group) showed responses intermediate to the control (SC, EC) and failing (SF, EF) groups. We conclude that voluntary exercise is beneficial to rats with heart failure induced by PAH and this is evidence to support the consideration of appropriate exercise regimes for potentially vulnerable groups

    Factors associated with disease progression in early-diagnosed pulmonary arterial hypertension associated with systemic sclerosis: longitudinal data from the DETECT cohort

    Get PDF
    OBJECTIVE: Pulmonary arterial hypertension (PAH) is a severe complication of systemic sclerosis (SSc). In this longitudinal study, we aimed to identify factors associated with an unfavourable outcome in patients with SSc with early PAH (SSc-PAH) from the DETECT cohort. METHODS: Patients with SSc-PAH enrolled in DETECT were observed for up to 3 years. Associations between cross-sectional variables and disease progression (defined as the occurrence of any of the following events: WHO Functional Class worsening, combination therapy for PAH, hospitalisation or death) were analysed by univariable logistic regression. RESULTS: Of 57 patients with PAH (median observation time 12.6 months), 25 (43.9%) had disease progression. The following factors (OR (95% CI)) were associated with disease progression: male gender (4.1 (1.2 to 14.1)), high forced vital capacity % predicted/carbon monoxide lung diffusion capacity (DLCO)% predicted ratio (3.6 (1.2 to 10.7)), high Borg Dyspnoea Index (1.7 (1.1 to 2.6)) and low DLCO% predicted (non-linear relationship). CONCLUSION: More than 40% of early-diagnosed patients with SSc-PAH had disease progression during a short follow-up time, with male gender, functional capacity and pulmonary function tests at PAH diagnosis being associated with progression. This suggests that even mild PAH should be considered a high-risk complication of SSc

    Assessment of Daily Life Physical Activities in Pulmonary Arterial Hypertension

    Get PDF
    Background: In pulmonary arterial hypertension (PAH), the six-minute walk test (6MWT) is believed to be representative of patient’s daily life physical activities (DLPA). Whether DLPA are decreased in PAH and whether the 6MWT is representative of patient’s DL PA remain unknown. Methods: 15 patients with idiopathic PAH (IPAH) and 10 patients with PAH associated with limited systemic sclerosis (PAH-SSc) were matched with 15 healthy control subjects and 10 patients with limited systemic sclerosis without PAH. Each subject completed a 6MWT. The mean number of daily steps and the mean energy expenditure and duration of physical activities.3 METs were assessed with a physical activity monitor for seven consecutive days and used as markers of DLPA. Results: The mean number of daily steps and the mean daily energy expenditure and duration of physical activities.3 METs were all reduced in PAH patients compared to their controls (all p,0.05). The mean number of daily steps correlated with the 6MWT distance for both IPAH and PAH-SSc patients (r = 0.76, p,0.01 and r = 0.85, p,0.01), respectively. Conclusion: DLPA are decreased in PAH and correlate with the 6MWT distance. Functional exercise capacity may thus be a useful surrogate of DL PA in PAH

    Endothelin-1 Predicts Hemodynamically Assessed Pulmonary Arterial Hypertension in HIV Infection.

    Get PDF
    BackgroundHIV infection is an independent risk factor for PAH, but the underlying pathogenesis remains unclear. ET-1 is a robust vasoconstrictor and key mediator of pulmonary vascular homeostasis. Higher levels of ET-1 predict disease severity and mortality in other forms of PAH, and endothelin receptor antagonists are central to treatment, including in HIV-associated PAH. The direct relationship between ET-1 and PAH in HIV-infected individuals is not well described.MethodsWe measured ET-1 and estimated pulmonary artery systolic pressure (PASP) with transthoracic echocardiography (TTE) in 106 HIV-infected individuals. Participants with a PASP ≥ 30 mmHg (n = 65) underwent right heart catheterization (RHC) to definitively diagnose PAH. We conducted multivariable analysis to identify factors associated with PAH.ResultsAmong 106 HIV-infected participants, 80% were male, the median age was 52 years and 77% were on antiretroviral therapy. ET-1 was significantly associated with higher values of PASP [14% per 0.1 pg/mL increase in ET-1, p = 0.05] and PASP ≥ 30 mmHg [PR (prevalence ratio) = 1.24, p = 0.012] on TTE after multivariable adjustment for PAH risk factors. Similarly, among the 65 individuals who underwent RHC, ET-1 was significantly associated with higher values of mean pulmonary artery pressure and PAH (34%, p = 0.003 and PR = 2.43, p = 0.032, respectively) in the multivariable analyses.ConclusionsHigher levels of ET-1 are independently associated with HIV-associated PAH as hemodynamically assessed by RHC. Our findings suggest that excessive ET-1 production in the setting of HIV infection impairs pulmonary endothelial function and contributes to the development of PAH

    Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen-rich saline has been reported to have antioxidant and anti-inflammatory effects and effectively protect against organ damage. Oxidative stress and inflammation contribute to the pathogenesis and/or development of pulmonary hypertension. In this study, we investigated the effects of hydrogen-rich saline on the prevention of pulmonary hypertension induced by monocrotaline in a rat model.</p> <p>Methods</p> <p>In male Sprague-Dawley rats, pulmonary hypertension was induced by subcutaneous administration of monocrotaline at a concentration of 6 mg/100 g body weight. Hydrogen-rich saline (5 ml/kg) or saline was administred intraperitoneally once daily for 2 or 3 weeks. Severity of pulmonary hypertension was assessed by hemodynamic index and histologic analysis. Malondialdehyde and 8-hydroxy-desoxyguanosine level, and superoxide dismutase activity were measured in the lung tissue and serum. Levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6) in serum were determined with enzyme-linked immunosorbent assay.</p> <p>Results</p> <p>Hydrogen-rich saline treatment improved hemodynamics and reversed right ventricular hypertrophy. It also decreased malondialdehyde and 8-hydroxy-desoxyguanosine levels, and increased superoxide dismutase activity in the lung tissue and serum, accompanied by a decrease in pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>These results suggest that hydrogen-rich saline ameliorates the progression of pulmonary hypertension induced by monocrotaline in rats, which may be associated with its antioxidant and anti-inflammatory effects.</p

    Pulmonary arterial hypertension: an update

    Get PDF
    Pulmonary arterial hypertension (PAH), defined as group 1 of the World Heart Organisation (WHO) classification of pulmonary hypertension, is an uncommon disorder of the pulmonary vascular system. It is characterised by an increased pulmonary artery pressure, increased pulmonary vascular resistance and specific histological changes. It is a progressive disease finally resulting in right heart failure and premature death. Typical symptoms are dyspnoea at exercise, chest pain and syncope; furthermore clinical signs of right heart failure develop with disease progression. Echocardiography is the key investigation when pulmonary hypertension is suspected, but a reliable diagnosis of PAH and associated conditions requires an intense work-up including invasive measurement by right heart catheterisation. Treatment includes general measures and drugs targeting the pulmonary artery tone and vascular remodelling. This advanced medical therapy has significantly improved morbidity and mortality in patients with PAH in the last decade. Combinations of these drugs are indicated when treatment goals of disease stabilisation are not met. In patients refractory to medical therapy lung transplantation should be considered an option

    BMP-2 Up-Regulates PTEN Expression and Induces Apoptosis of Pulmonary Artery Smooth Muscle Cells under Hypoxia

    Get PDF
    To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia.Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways.Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate.BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway
    corecore