1,482 research outputs found
Broadband Observations of High Redshift Blazars
We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2−3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2−3303, none of the sources were known as γ-ray emitters, and our analysis of ~7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical−UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity–jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.A.C.F. thanks Greg Madejski for discussions on the curvature of blazar X-ray spectra and acknowledges support from ERC Advanced Grant 340442. This research has made use of data, software, and/or web tools obtained from NASAs High Energy Astrophysics Science Archive Research Center (HEASARC), a service of Goddard Space Flight Center and the Smithsonian Astrophysical Observatory. Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC, Italy. This research has also made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/
Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption
Explosive energy release is a common phenomenon occurring in magnetized
plasma systems ranging from laboratories, Earth's magnetosphere, the solar
corona and astrophysical environments. Its physical explanation is usually
attributed to magnetic reconnection in a thin current sheet. Here we report the
important role of magnetic flux rope structure, a volumetric current channel,
in producing explosive events. The flux rope is observed as a hot channel prior
to and during a solar eruption from the Atmospheric Imaging Assembly (AIA)
telescope on board the Solar Dynamic Observatory (SDO). It initially appears as
a twisted and writhed sigmoidal structure with a temperature as high as 10 MK
and then transforms toward a semi-circular shape during a slow rise phase,
which is followed by fast acceleration and onset of a flare. The observations
suggest that the instability of the magnetic flux rope trigger the eruption,
thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure
Combining Thermal Desorption with Selected Ion Flow Tube Mass Spectrometry for Analyses of Breath Volatile Organic Compounds
Supporting Information is available online at: https://pubs.acs.org/doi/10.1021/acs.analchem.3c04286 .An instrument integrating thermal desorption (TD) to selected ion flow tube mass spectrometry (SIFT-MS) is presented, and its application to analyze volatile organic compounds (VOCs) in human breath is demonstrated for the first time. The rationale behind this development is the need to analyze breath samples in large-scale multicenter clinical projects involving thousands of patients recruited in different hospitals. Following adapted guidelines for validating analytical techniques, we developed and validated a targeted analytical method for 21 compounds of diverse chemical class, chosen for their clinical and biological relevance. Validation has been carried out by two independent laboratories, using calibration standards and real breath samples from healthy volunteers. The merging of SIFT-MS and TD integrates the rapid analytical capabilities of SIFT-MS with the capacity to collect breath samples across multiple hospitals. Thanks to these features, the novel instrument has the potential to be easily employed in clinical practice.This project was supported by Royal Society of Chemistry through the Research Fund. This research was also supported by Wellcome Trust, Surgery and Cancer Department, Imperial College London and NIHR London In Vitro Diagnostics Co-operative
Sperm competition-induced plasticity in the speed of spermatogenesis
Background: Sperm competition between rival ejaculates over the fertilization of ova typically selects for the production of large numbers of sperm. An obvious way to increase sperm production is to increase testis size, and most empirical work has focussed on this parameter. Adaptive plasticity in sperm production rate could also arise due to variation in the speed with which each spermatozoon is produced, but whether animals can respond to relevant environmental conditions by modulating the kinetics of spermatogenesis in this way has not been experimentally investigated. Results: Here we demonstrate that the simultaneously hermaphroditic flatworm Macrostomum lignano exhibits substantial plasticity in the speed of spermatogenesis, depending on the social context: worms raised under higher levels of sperm competition produce sperm faster. Conclusions: Our findings overturn the prevailing view that the speed of spermatogenesis is a static property of a genotype, and demonstrate the profound impact that social environmental conditions can exert upon a key developmental process. We thus identify, to our knowledge, a novel mechanism through which sperm production rate is maximised under sperm competition
Self-Organization of Muscle Cell Structure and Function
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton
Multi-Regge kinematics and the moduli space of Riemann spheres with marked points
We show that scattering amplitudes in planar N = 4 Super Yang-Mills in
multi-Regge kinematics can naturally be expressed in terms of single-valued
iterated integrals on the moduli space of Riemann spheres with marked points.
As a consequence, scattering amplitudes in this limit can be expressed as
convolutions that can easily be computed using Stokes' theorem. We apply this
framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove
that at L loops all MHV amplitudes are determined by amplitudes with up to L +
4 external legs. We also investigate non-MHV amplitudes, and we show that they
can be obtained by convoluting the MHV results with a certain helicity flip
kernel. We classify all leading singularities that appear at LLA in the Regge
limit for arbitrary helicity configurations and any number of external legs.
Finally, we use our new framework to obtain explicit analytic results at LLA
for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to
eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the
results in Mathematica forma
Ultrasonic intensification as a tool for enhanced microbial biofuel yields
peer-reviewedUltrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas
of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process)
can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short
time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective
extraction of specific biomass components and can enhance product yields which can be of economic benefit. This
review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various
microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The
operating principles associated with the process of ultrasonication and the influence of various operating conditions
including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic
intensification are also described
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- …