41 research outputs found

    β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: A role in the chemopreventive efficacy of aspirin

    Get PDF
    Background: Levels of the pro-tumorigenic prostaglandin PGE 2 are increased in colorectal cancer, previously attributed to increased synthesis through COX-2 upregulation and, more recently, to decreased catabolism. The functionally linked genes 15-prostaglandin dehydrogenase (15-PGDH) and the prostaglandin transporter PGT co-operate in prostaglandin degradation and are downregulated in colorectal cancer. We previously reported repression of 15-PGDH expression by the Wnt/β-catenin pathway, commonly deregulated during early colorectal neoplasia. Here we asked whether β-catenin also regulates PGT expression. Methods: The effect of β-catenin deletion in vivo was addressed by PGT immunostaining of β-catenin/lox-villin-cre-ERT2 mouse tissue. The effect of siRNA-mediated β-catenin knockdown and dnTCF4 induction in vitro was addressed by semi-quantitative and quantitative real-time RT-PCR and immunoblotting. Results: This study shows for the first time that deletion of β-catenin in murine intestinal epithelium in vivo upregulates PGT protein, especially in the crypt epithelium. Furthermore, β-catenin knockdown in vitro increases PGT expression in both colorectal adenoma-and carcinoma-derived cell lines, as does dnTCF4 induction in LS174T cells.Conclusions:These data suggest that β-catenin employs a two-pronged approach to inhibiting prostaglandin turnover during colorectal neoplasia by repressing PGT expression in addition to 15-PGDH. Furthermore, our data highlight a potential mechanism that may contribute to the non-selective NSAID aspirins chemopreventive efficacy. © 2012 Cancer Research UK All rights reserved

    Glutathione S-transferase mu 1 (GSTM1) and theta 1 (GSTT1) genetic polymorphisms and atopic asthma in children from Southeastern Brazil

    Get PDF
    Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5% versus 40.3%, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95%CI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country

    The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE <sub>2 </sub>and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE <sub>2 </sub>is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE <sub>2 </sub>in TLR4-/- mice to see if PGE <sub>2 </sub>bypasses the protection from colitis-associated tumorigenesis.</p> <p>Method</p> <p>Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE <sub>2 </sub>(high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE <sub>2 </sub>during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed.</p> <p>Results</p> <p>In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE <sub>2 </sub>treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE <sub>2 </sub>treatment. Endogenous prostanoid synthesis was differentially affected by PGE <sub>2 </sub>treatment during acute and recovery phases of colitis. Exogenous administration of PGE <sub>2 </sub>increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE <sub>2 </sub>treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2.</p> <p>Conclusions</p> <p>These results highlight the importance of PGE <sub>2 </sub>as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.</p

    A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    Get PDF
    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198C>G SNP (odds ratio=8.6; P=0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5′-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198C>G SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression

    Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019

    Get PDF
    Background The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. Methods We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. Findings In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. Interpretation The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. Funding The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)
    corecore