148 research outputs found

    Evaluating Depressive Symptoms in Schizophrenia: A Psychometric Comparison of the Calgary Depression Scale for Schizophrenia and the Hamilton Depression Rating Scale

    Get PDF
    Background: The aim of this study was to compare two measures of depression in patients with schizophrenia and schizophrenia spectrum disorder, including patients with delusional and schizoaffective disorder, to conclude implications for their application. Sampling and Methods: A total of 278 patients were assessed using the Calgary Depression Scale for Schizophrenia (CDSS) and the Hamilton Depression Rating Scale (HAMD-17). The Positive and Negative Syndrome Scale (PANSS) was also applied. At admission and discharge, a principal component analysis was performed with each depression scale. The two depression rating scales were furthermore compared using correlation and regression analyses. Results: Three factors were revealed for the CDSS and HAMD-17 factor component analysis. A very similar item loading was found for the CDSS at admission and discharge, whereas results of the loadings of the HAMD-17 items were less stable. The first two factors of the CDSS revealed correlations with positive, negative and general psychopathology. In contrast, multiple significant correlations were found for the HAMD-17 factors and the PANSS sub-scores. Multiple regression analyses demonstrated that the HAMD-17 accounted more for the positive and negative symptom domains than the CDSS. Conclusions:The present results suggest that compared to the HAMD-17, the CDSS is a more specific instrument to measure depressive symptoms in schizophrenia and schizophrenia spectrum disorder, especially in acutely ill patients. Copyright (c) 2012 S. Karger AG, Base

    Rationale and design of an independent randomised controlled trial evaluating the effectiveness of aripiprazole or haloperidol in combination with clozapine for treatment-resistant schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One third to two thirds of people with schizophrenia have persistent psychotic symptoms despite clozapine treatment. Under real-world circumstances, the need to provide effective therapeutic interventions to patients who do not have an optimal response to clozapine has been cited as the most common reason for simultaneously prescribing a second antipsychotic drug in combination treatment strategies. In a clinical area where the pressing need of providing therapeutic answers has progressively increased the occurrence of antipsychotic polypharmacy, despite the lack of robust evidence of its efficacy, we sought to implement a pre-planned protocol where two alternative therapeutic answers are systematically provided and evaluated within the context of a pragmatic, multicentre, independent randomised study.</p> <p>Methods/Design</p> <p>The principal clinical question to be answered by the present project is the relative efficacy and tolerability of combination treatment with clozapine plus aripiprazole compared with combination treatment with clozapine plus haloperidol in patients with an incomplete response to treatment with clozapine over an appropriate period of time. This project is a prospective, multicentre, randomized, parallel-group, superiority trial that follow patients over a period of 12 months. Withdrawal from allocated treatment within 3 months is the primary outcome.</p> <p>Discussion</p> <p>The implementation of the protocol presented here shows that it is possible to create a network of community psychiatric services that accept the idea of using their everyday clinical practice to produce randomised knowledge. The employed pragmatic attitude allowed to randomly allocate more than 100 individuals, which means that this study is the largest antipsychotic combination trial conducted so far in Western countries. We expect that the current project, by generating evidence on whether it is clinically useful to combine clozapine with aripiprazole rather than with haloperidol, provides physicians with a solid evidence base to be directly applied in the routine care of patients with schizophrenia.</p> <p>Trial Registration</p> <p><b>Clincaltrials.gov Identifier</b>: NCT00395915</p

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at s \sqrt{s} s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays
    corecore