478 research outputs found

    Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films

    Get PDF
    The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations

    Bombs and flares at the surface and lower atmosphere of the Sun

    Get PDF
    This research was supported by the Research Council of Norway and by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. 291058.A spectacular manifestation of solar activity is the appearance of transient brightenings in the far wings of the Hα line, known as Ellerman bombs (EBs). Recent observations obtained by the Interface Region Imaging Spectrograph have revealed another type of plasma "bombs" (UV bursts) with high temperatures of perhaps up to 8 × 104 K within the cooler lower solar atmosphere. Realistic numerical modeling showing such events is needed to explain their nature. Here, we report on 3D radiative magnetohydrodynamic simulations of magnetic flux emergence in the solar atmosphere. We find that ubiquitous reconnection between emerging bipolar magnetic fields can trigger EBs in the photosphere, UV bursts in the mid/low chromosphere and small (nano-/micro-) flares (106 K) in the upper chromosphere. These results provide new insights into the emergence and build up of the coronal magnetic field and the dynamics and heating of the solar surface and lower atmosphere.Publisher PDFPeer reviewe

    Accelerated particle beams in a 3D simulation of the quiet Sun. Lower atmospheric spectral diagnostics

    Full text link
    Nanoflare heating through small-scale magnetic reconnection events is one of the prime candidates to explain heating of the solar corona. However, direct signatures of nanoflares are difficult to determine, and unambiguous observational evidence is still lacking. Numerical models that include accelerated electrons and can reproduce flaring conditions are essential in understanding how low-energetic events act as a heating mechanism of the corona, and how such events are able to produce signatures in the spectral lines that can be detected through observations. We investigate the effects of accelerated electrons in synthetic spectra from a 3D radiative magnetohydrodynamics simulation to better understand small-scale heating events and their impact on the solar atmosphere. We synthesised the chromospheric Ca II and Mg II lines and the transition region Si IV resonance lines from a quiet Sun numerical simulation that includes accelerated electrons. We calculated the contribution function to the intensity to better understand how the lines are formed, and what factors are contributing to the detailed shape of the spectral profiles. The synthetic spectra are highly affected by variations in temperature and vertical velocity. Beam heating exceeds conductive heating at the heights where the spectral lines form, indicating that the electrons should contribute to the heating of the lower atmosphere and hence affect the line profiles. However, we find that it is difficult to determine specific signatures from the non-thermal electrons due to the complexity of the atmospheric response to the heating in combination with the relatively low energy output (~1e21 erg/s). Even so, our results contribute to understanding small-scale heating events in the solar atmosphere, and give further guidance to future observations

    Signatures of ubiquitous magnetic reconnection in the deep atmosphere of sunspot penumbrae

    Full text link
    Ellerman bombs are regions with enhanced Balmer line wing emission and mark magnetic reconnection in the deep solar atmosphere in active regions and quiet Sun. They are often found in regions where opposite magnetic polarities are in close proximity. Recent high resolution observations suggest that Ellerman bombs are more prevalent than thought before. We aim to determine the occurrence of Ellerman bombs in the penumbra of sunspots. We analyze high spatial resolution observations of sunspots in the Balmer H-alpha and H-beta lines as well as auxiliary continuum channels obtained with the Swedish 1-m Solar Telescope and apply the k-means clustering technique to systematically detect and characterize Ellerman Bombs. Features with all the defining characteristics of Ellerman bombs are found in large numbers over the entire penumbra. The true prevalence of these events is only fully appreciated in the H-beta line due to highest spatial resolution and lower chromospheric opacity. We find that the penumbra hosts some of the highest Ellerman bomb densities, only surpassed by the moat in the immediate surroundings of the sunspot. Some penumbral Ellerman bombs show flame morphology and rapid dynamical evolution. Many penumbral Ellerman bombs are fast moving with typical speed of 3.7 km/s and sometimes more than 10 km/s. Many penumbral Ellerman bombs migrate from the inner to the outer penumbra over hundreds of km and some continue moving beyond the outer penumbral boundary into the moat. Many penumbral Ellerman bombs are found in the vicinity of regions with opposite magnetic polarity. We conclude that reconnection is a near continuous process in the low atmosphere of the penumbra of sunspots as manifest in the form of penumbral Ellerman bombs. These are so prevalent that they may be a major sink of sunspot magnetic energy.Comment: accepted for publication in A&A. Movies can be found at https://www.mn.uio.no/astro/english/people/aca/rouppe/movies

    Chromospheric emission from nanoflare heating in RADYN simulations

    Full text link
    Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in the understanding of how nanoflares may act as a heating mechanism of the corona. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. The Mg II h and k, Ca II H and K, Ca II 854.2 nm, H-alpha and H-beta chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares

    Wave Propagation and Jet Formation in the Chromosphere

    Full text link
    We present the results of numerical simulations of wave propagation and jet formation in solar atmosphere models with different magnetic field configurations. The presence in the chromosphere of waves with periods longer than the acoustic cutoff period has been ascribed to either strong inclined magnetic fields, or changes in the radiative relaxation time. Our simulations include a sophisticated treatment of radiative losses, as well as fields with different strengths and inclinations. Using Fourier and wavelet analysis techniques, we investigate the periodicity of the waves that travel through the chromosphere. We find that the velocity signal is dominated by waves with periods around 5 minutes in regions of strong, inclined field, including at the edges of strong flux tubes where the field expands, whereas 3-minute waves dominate in regions of weak or vertically oriented fields. Our results show that the field inclination is very important for long-period wave propagation, whereas variations in the radiative relaxation time have little effect. Furthermore, we find that atmospheric conditions can vary significantly on timescales of a few minutes, meaning that a Fourier analysis of wave propagation can be misleading. Wavelet techniques take variations with time into account and are more suitable analysis tools. Finally, we investigate the properties of jets formed by the propagating waves once they reach the transition region, and find systematic differences between the jets in inclined field regions and those in vertical field regions, in agreement with observations of dynamic fibrils.Comment: 27 pages, 29 figures; accepted for publication in Astrophysical Journa

    Intermittent reconnection and plasmoids in UV bursts in the low solar atmosphere

    Full text link
    Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this paper we exploit the high-resolution instruments Interface Region Imaging Spectrograph (IRIS) and the new CHROMIS Fabry-Perot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403A UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934A line now provide compelling evidence for the presence of plasmoids, by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.2 arcsec and that evolve on timescales of order seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.Comment: Accepted for publication in Astrophysical Journal Letters. Movies are available at http://folk.uio.no/rouppe/plasmoids_chromis

    Magnetoacoustic shocks as driver of quiet Sun mottles

    Get PDF
    We present high spatial and high temporal resolution observations of the quiet Sun in H-alpha obtained with the Swedish 1-m Solar Telescope on La Palma. We observe that many mottles, jet-like features in the quiet Sun, display clear up- and downward motions along their main axis. In addition, many mottles show vigorous transverse displacements. Unique identification of the mottles throughout their lifetime is much harder than for their active region counterpart, dynamic fibrils. This is because many seem to lack a sharply defined edge at their top, and significant fading often occurs throughout their lifetime. For those mottles that can be reliably tracked, we find that the mottle tops often undergo parabolic paths. We find a linear correlation between the deceleration these mottles undergo and the maximum velocity they reach, similar to what was found earlier for dynamic fibrils. Combined with an analysis of oscillatory properties, we conclude that at least part of the quiet Sun mottles are driven by magnetoacoustic shocks. In addition, the mixed polarity environment and vigorous dynamics suggest that reconnection may play a significant role in the formation of some quiet Sun jets.Comment: 12 pages, 4 figures. ApJ Letters, in pres
    • …
    corecore