7,421 research outputs found

    The stability theory of solutions to partial differential equations - A bibliographical survey

    Get PDF
    Bibliographical survey of research on stability theory of solutions to partial differential equation

    The existence and stability of nonlinear wave equations

    Get PDF
    Second order nonlinear wave equation solution on Hilbert space with stability and uniquenes

    Semi-groups, groups and Lyapunov stability of partial differential equations

    Get PDF
    Applications of group theory and Liapunov stability to partial differential equation

    Transient response from the Lyapunov stability equation

    Get PDF
    Transient response from Liapunov stability equatio

    Initial radio-frequency gas heating experiments to simulate the thermal environment in a nuclear light bulb reactor

    Get PDF
    Initial radio frequency gas heating experiments to simulate thermal environment in nuclear light bulb reacto

    Experimental investigations to simulate the thermal environment, transparent walls, and propellant heating in a nuclear light bulb engine

    Get PDF
    Simulating thermal environment, transparent walls, and propellant heating in nuclear light bulb engin

    Chromospheric CaII Emission in Nearby F, G, K, and M stars

    Full text link
    We present chromospheric CaII activity measurements, rotation periods and ages for ~1200 F-, G-, K-, and M- type main-sequence stars from ~18,000 archival spectra taken at Keck and Lick Observatories as a part of the California and Carnegie Planet Search Project. We have calibrated our chromospheric S values against the Mount Wilson chromospheric activity data. From these measurements we have calculated median activity levels and derived R'HK, stellar ages, and rotation periods for 1228 stars, ~1000 of which have no previously published S values. We also present precise time series of activity measurements for these stars.Comment: 62 pages, 7 figures, 1 table. Second (extremely long) table is available at http://astro.berkeley.edu/~jtwright/CaIIdata/tab1.tex Accepted by ApJ

    New Models of General Relativistic Static Thick Disks

    Full text link
    New families of exact general relativistic thick disks are constructed using the ``displace, cut, fill and reflect'' method. A class of functions used to ``fill'' the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the function's curvature further restrict the ranges of the free parameters that allow phisically acceptable disks. Then this class of functions together with the Schwarzschild metric is employed to construct thick disks in isotropic, Weyl and Schwarzschild canonical coordinates. In these last coordinates an additional function must be added to one of the metric coefficients to generate exact disks. Disks in isotropic and Weyl coordinates satisfy all energy conditions, but those in Schwarzschild canonical coordinates do not satisfy the dominant energy condition.Comment: 27 pages, 14 figure
    corecore