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1. INTRODUCTION 

The i n t e n t  of t h i s  paper is t o  provide a mathematical and theo re t i ca l  

framework i n  which t h e  s t a b i l i t y  of so lu t ions  t o  c e r t a i n  types of p a r t i a l  

d i f f e r a n t i a l  equations can be  rigorously invest igated.  

t h i s  can be establ ished by examining the  r a the r  subs t an t i a l  number of papers 

wr i t t en  on s t a b i l i t y  of p a r t i a l  d i f f e r e n t i a l  equations [l-71 i n  which the  

mathematical manipulations are, a t  least i n  pa r t ,  formal i n  nature  r a the r  

than rigorously substant ia ted.  Roughly speaking these manipulations involve 

in t eg ra t ion  by p a r t s ,  appl ica t ion  of c e r t a i n  i n t e g r a l  i nequa l i t i e s ,  t h e  

assumption of c e r t a i n  "smoothness" proper t ies  of so lu t ions  t o  p a r t i a l  d i f f e r -  

e n t i a l  equations, and the assumption t h a t  so lu t ions  t o  the p a r t i a l  differen-  

t i a l  equations e s s e n t i a l l y  s a t i s f y  the  requirements of a dynamical system, 

Generally speaking, i n  the  l i t e r a t u r e  present ly  ava i lab le ,  most of these 

d e t a i l s  have not been rigorously substant ia ted.  

A need f o r  doing 

It w i l l  he  shown t h a t  f o r  c e r t a i n  classes of p a r t i a l  d i f f e r e n t i a l  equa- 

t ions sa t i s fy ing  c e r t a i n  types of boundary conditions,  the in t eg ra t ion  by 

p a r t s  formula, t he  appl ica t ion  of classical i n t e g r a l  i nequa l i t i e s  and the  

assumptions of s u f f i c i e n t l y  smooth so lu t ioas  can be rigorously substant ia ted.  

However, t he  f i n a l  assymption t h a t  the  so lu t ions  can be regarded as character- 

i z ing  a dynamical system, is not t r u e  i n  general  even f o r  l i n e a r  p a r t i a l  

d i f f e r e n t i a l  equations. For c e r t a i n  p a r t i a l  d i f f e r e n t i a l  equations t h i s  

assumption is shown t o  be t rue.  This class of p a r t i a l  d i f f e r e n t i a l  equations 

generates so lu t ions  which happen t o  s a t i s f y  the  group property which is 

equivalent t o  the  dynamical system property. 

d i f f e r e n t i a l  equations generate so lu t ions  which s a t i s f y  only t h e  semi-group 

property, 

terminology, 

A much broader class of p a r t i a l  

This is  not the same as a dynamical system i n  the general ly  accepted 
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A v iab le  Lyapunov s t a b i l i t y  theory can be rigorously developed f o r  

t he  class of p a r t i a l  d i f f e r e n t i a l  equations which generate e i t h e r  groups 

o r  semi-groups. The theory f o r  groups is "nicer" and more complete than 

t h e  theory f o r  semi-groups i n  t h a t  necessary and s u f f i c i e n t  conditions 

can be given f o r  asymptotic s t a b i l i t y .  

A l a r g e  p a r t  of t h i s  paper is expository i n  nature. Most of Sections 

2 through 6 and 9 are w e l l  known t o  mathematicians working i n  t h i s  pa r t i -  

cu la r  area of func t iona l  analysis.  The i n t e n t  of these sec t ions  is t o  

provide a concise treatment of the  mathematical resources which are 

necessary t o  develop a Lyapunov s t a b i l i t y  theory f o r  p a r t i a l  differen-  

t i a l  equations. 

are instrumental  i n  obtaining a s u i t a b l e  Lyapunov s t a b i l i t y  theory. 

of these,  such as the  concept of equivalent inner  product, are not t rea ted  

i n  d e t a i l  i n  t h e  standard references ava i lab le  t o  authors. The contents 

of Sections 7, 8 and 10  are thought t o  be r e l a t i v e l y  new and ce r t a in ly  

important t o  the treatment of s t a b i l i t y  of p a r t i a l  d i f f e r e n t i a l  equations. 

There are c e r t a i n  key points  i n  these sec t ions  which 

Some 

For f u l l  understanding of t h i s  paper some background i n  funct ional  

ana lys i s  is essent ia l .  

Kolmogorov and Fomin [8] and at  a somewhat more advanced level the  book 

by Taylor [9]. I n  t h e  opinion of t h e  authors,  t h e  f i n e s t  general  reference 

f o r  t h i s  work is the  book by Yosida [ lo] .  
general  theory of semi-groups is t he  book by H i l l e  and P h i l l i p s  [ l l ]  and 

also,  P a r t  1 of the  work by Dunford and Schwartz [12]. 

The bes t  elementary reference is the  book by 

The standard reference f o r  t he  

For the abs t r ac t  theory of p a r t i a l  d i f f e r e n t i a l  operators ,  probably 

the  bes t  reference is Par t  2 of t h e  work by Dunford and Schwartz [13]. 

As general  references on both the  formal and abs t r ac t  propert ies  of p a r t i a l  
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d i f f e r e n t i a l  operators  valuable information can be found i n  the  books 

by Smirnov [ 141 Kantorovich and Akilov [ 151 , Petrovski i ,  [ 161 , Smirnov [ 17 1 , 
Goldberg, [18] and, of course, the  pioneering work by Sobolev, w e l l  repre- 

sented i n  the  two monographs [19, 201, and t h e  book [21]. I n  addi t ion  t o  

these t e x t s  there  are undoubtedly many others  which the  in t e re s t ed  reader  

w i l l  be ab le  t o  f ind  on h i s  own. 

There is a g rea t  volume of re levant  l i t e r a t u r e  appearing i n  engineer- 

ing journals ,  physics journals ,  mathematical journals  and as eeminar notes,  

l ec tu re  notes and monographs [22-281. 

of treatment, t h e  ex ten t  of mathematical background required,  and i n  some 

instances,  t he  degree of spec ia l i za t ion  required o f f e r s  t o  the  researcher 

i n t e re s t ed  i n  t h i s  f i e l d  a vas t  a r ray  of technical  l i t e r a t u r e ,  not a l l  of 

which can be referenced. For t h i s  reason, only a few of the  most re levant  

technical  works are referenced i n  t h i s  paper. 

I n  sheer weight of numbers, va r i e ty  

It is  assumed t h a t  the  reader is already fami l ia r  with some of t he  

bas ic  theory of funct ional  analysis.  Only a b r i e f  ou t l i ne  of some of 

t he  necessary top ics  are presented i n  Sections 2 through 5. 

are made and theorems are s t a t e d  without e laborat ing on the proofs of 

these fundamental concepts which may be found i n  many of the references.  

The theory here is developed i n  the  context of real Banach and Hi lber t  

spaces, but  there  is no d i f f i c u l t y  i n  extending a l l  of these r e s u l t s  t o  

complex Banach o r  Hi lber t  spaces. 

and Hi lber t  spaces. 

i n  Defini t ion 2.2. Section 3 gives a br ie f  summary of theory of l i n e a r  

operators,  For appl icat ions t o  p a r t i a l  d i f f e r e n t i a l  equations, the key 

concept is  t h a t  of a closed, not necessar i ly  bounded, l i n e a r  operator. 

I n  addi t ion a complete character izat ion of equivalent inner  products is 

Statements 

Section 2 is  a br ie f  summary of Banach 

The concept of equivalent inner  product is  introduced 
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given i n  theorem 3.2. 

theory needed i n  the  remainder of t h i s  paper. 

extended treatment of t he  theory of semi-groups and groups. 

r e s u l t s  i n  t h i s  s ec t ion  are the  r e l a t ions  between d i s s ipa t ive  operators  

and cont rac t ive  o r  negative cont rac t ive  semi-groups. 

examples are given a t  the  end of t h i s  section. 

statement of what is meant by so lu t ions  t o  operator  d i f f e r e n t i a l  equations 

and the  s t a b i l i t y  of these solut ions.  Most of the content of Section 7 

is thought t o  be r e l a t i v e l y  new. 

choice of the  form f o r  a Lyapunov funct ional  f o r  studying the  s t a b i l i t y  

of operator  d i f f e r e n t i a l  equations. 

equivalent inner  product and d i s s ipa t ive  operators ,  and leads t o  the  

usual Lyapunov s t a b i l i t y  theory. 

7.4. 

d i r e c t  general izat ion of the  usual Lyapunov s t a b i l i t y  theory f o r  l i n e a r  

d i f f e r e n t i a l  equations i n  f i n i t e  dimensional spaces. This is shown in 

Section 8. 

Section 4 is a very b r i e f  resume of the  s p e c t r a l  

Section 5 is a more 

The key 

Two elementary 

Section 6 is  a concise 

The main r e s u l t  i n  t h i s  s ec t ion  is the  

This is re l a t ed  t o  the  concept of 

The key r e s u l t s  are theorems 7.3 and 

It turns  out  t h a t  t h i s  theory developed €or Hi lber t  spaces is a 

Section 9 is c r u c i a l  i n  developing a Lyapunov s t a b i l i t y  theory f o r  

p a r t i a l  d i f f e r e n t i a l  equations. It is i n  t h i s  s ec t ion  t h a t  t he  t r a n s i t i o n  

from what may be  ca l l ed  formal p a r t i a l  d i f f e r e n t i a l  equations t o  abs t r ac t  

operator d i f f e r e n t i a l  equations is made. Mathematically, most of t he  

content of t h i s  s ec t ion  is not new, i n  f a c t  being taken i n  g rea t  p a r t  

from Dunford and Schwartz [13]. The idea is t o  take ce r t a in  types of 

formal p a r t i a l  d i f f e r e n t i a l  operators  and t o  extend these t o  closed 

operators  i n  s u i t a b l e  Hi lber t  spaces. 

However, f o r  a r e s t r i c t e d  class of p a r t i a l  d i f f e r e n t i a l  operator t h i s  can 

be done. 

This can not  be done in general. 

It is with t h i s  class of p a r t i a l  d i f f e r e n t i a l  operators  t h a t  
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the  development here  is  concerned. 

of t he  i n t e g r a l  inequal i ty  formula, and Garding's inequal i ty ,  which 

is ac tua l ly  fundamental i n  obtaining the  las t  theorem. 

The key r e s u l t s  are the v a l i d i t y  

I n  Section 10 several examples i l l u s t r a t e  t he  appl ica t ion  of t he  

theory. 

order t o  exemplify t h e  re la t ionship  of t h i s  r igorous mathematical treat- 

ment t o  the  more formal proper t ies  described earlier. 

c r ibes  areas f o r  f u t u r e  research along the  l i n e s  described i n  t h i s  paper. 

Most of these  are se lec ted  from the  ava i lab le  l i t e r a t u r e  i n  

Section 11 des- 

The content of t h i s  paper is  an expansion of a previous paper 1291 

and is taken i n  p a r t  from a doctora l  d i s s e r t a t i o n  by G. R. Buis [30] and 

some o ther  repor t s  and papers by t h e  authors [31, 321. Extensions t o  

both t h e  l i n e a r  and nonlinear theory can be  found i n  [32-381 as described 

b r i e f l y  i n  Section 11. 
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2. Banach and Hilber t  Spaces 

It is  assumed t h a t  the  reader is  already familiar with the  theory 

of Banach and Hi lber t  spaces. 

necessary topics  w i l l  be presented here. 

may be found i n  the  elementary'book [8] and the  more advanced texts[9-13]. 

Most of the  theory w i l l  be developed i n  the  context of r e a l  Banach and 

Hilbert spaces, but  on occasion, complex numbers w i l l  be used; i f  a i s  

complex, i s  the complex conjugate of a. 

Only a b r i e f  ou t l ine  of some of the  

Proofs and fu r the r  details 

A normed l i n e a r  space X, i s  denoted by X = ( E ,  I I I I ) where E i s  a 

l i nea r  vector space over a f i e l d  of s ca l a r s ,  K ( the r e a l  o r  complex 

numbers) , and I I * I  I is  the  norm i n  X satisf 'ying f o r  a l l  UEK and a l l  

x, YEE: (a>  J l x l I  2 0 ;  b )  I I a x i l = I ~ l  I l x l l ;  ( c )  Ilx+yII 2 I l ~ l l + l l ~ l l ~  
and ( d )  

such t h a t  given any E > 0,  there  e x i s t s  an integer 

t h a t  m,n > M imply t h a t  I lxm-xnI 1 c E .  

converges t o  an element XEX, the  space i s  said t o  be a complete normed 

l i n e a r  space and i s  ca l led  a Banach space (or  B-space). 

i s  designated by 1 / % - X I  I + 0 

r e a l  B-space i f  K i s  the f i e l d  of the  real numbers. 

11x1 I = 0 i f f  x = 0. A Cauchy sequence, {xn> G X  i s  a sequence 

N = N ( E )  > 0 such 

If each Cauchy sequence i n  X 

The convergence 

as n -t 00 or  x + x or  l i m  xn=x. X i s  a n 

A Hilber t  space ( o r  H-space) , H,  i s  a spec ia l  B-space, t h e  norm of 

2 2 
+ I Ix-yl I which satisfies the parallelogram l a w ,  I Ix+yI I 

f o r  a l l  x, YEX. 

(1/4) ( 1  Ix+yl I - 1  Ix-yl I and then H i s  denoted by H = ( E ,  ( * , a ) ) .  

t i v e l y ,  i f  H i s  an inner product space, t he  inner  product, ( 

be used t o  define a norm by 1 1x1 1 = ( x , x > ~ / ~ .  

has the following propert ies  fo r  a l l  asK and a l l  X,Y,ZEE: (a)  (a x,y)=a(x,y) ;  

= 2(  11x1 12+1 IyI 1 2 )  
This may be used t o  define an inner product ( 4 9 0 )  by (x ,y)=  

Alterna- 
2 2 

), i n  H may 

An inner  ( o r  s c a l a r )  product 
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- 
(b) (x,V) = (v,x>; (c) (x+yy z )  = (x,z) + ( Y , Z ) :  and (d) (x,x)>o 

whenever xf0. Thus, an H-space is an inner  product space which is 

a l s o  a B-space with norm [ 1x1 I = ( x , ~ ) ~ " .  H i s  a real H-space if 

K i s  the  f i e l d  d the  real numbers. 

inner  product is b i l i n e a r  for a real H-space (sespui-linear for a 

complex H-space) . 

By properties (a), (b) , (c) , t h e  

A point XEX is  sa id  t o  be a l i m i t  point  of a set A g X i f f  there  

exists a sequence of d i s t i n c t  elements fxnl  C A such t h a t  l i m  xn = x. 

The closure of a set A, denoted by x, i s  t he  set comprised of A and 

a l l  the  l i m i t  Doints of A. A set A i s  c losed i f f  A = x e  A set Ais 

s a i d  t o  be dense i n  X if x a X. If A is closed and dense i n  X ,  A=X. 

Defini t ion --c-*.-- - .-*-..-/. 2.1: 'If XI = (E, 

two norms I I 0 I I and I I I I 

real  constants,  

f o r  a l l  XEE. 

---.-. 

- 

- -.*.-. 

and X2 = (E ,  l \ * l ! 2 ) ,  then the 

are said t o  be eauivalent i f f  there  e x i s t  1 

2 > CY 2 6 > 0 such t h a t  61 1x1 i 2  5 < 11x1 I l  =<cy1 1x1 I 

It is clear t h a t  a l l  t he  imnortant Dropertles (such as convergence, 

denseness, e t c , )  holding f o r  one norm w i l l  a l so  hold f o r  an equivalent 

nom. 

Sometimes i n  the following no d i s t i n c t i o n  w i l l  be made between X1 and 

X i f  the  norms are equivalent. Based on the concept of equivalent 

I n  such a case XI and X2 are sa id  t o  be t o p o l o ~ i c a l l y  equivalent. ----. .-- 
Y--  

2 

norms, i t  is  possible  t o  consider the  concept o f  equivalent inner 

nroducts ., 

Uefini t ion ---.e- 2.2: .'.. 

two inner  products are sa id  t o  be equivalent *_-I__ i f f  t h e i r  corresponding 

If H1 = (E, (*9*),) and I$ = (E, then the  

norms are equivalent * 

The equivalence of norms does no t imply  the  equfvalence of inner 

products, since a B-space need not be a Hi lbe r t  space. However, i f  
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each norm s a t i s f i e s  the parallelogram l a w ,  then the inner products are 

equivalent i f  the norms are equivalent. In the sequel, an important 

role  is played by equivalent inner products. 

Example 2.1: 

c o l  { X l ,  * * .  , xn}, xi i s  real and / x i /  < 00 f o r  i=l, e = * ,  n. 

inner product i n  Rn i s  

L e t  Rn be the  s e t  of a l l  r e a l  n-tuples, xcRn x = 

The 

n 
(x' = transpose of x) 

and the  norm i s  

Rn i s  a Hilber t  space. Any equivalent inner product i s  

where P i s  a real, symmetric pos i t ive  d e f i n i t e  matrix. 

the  minimum (maximum) eigenvalue of P, then 11x1 I l  = (x 'Px) ' /~  implies 

If A l ( A n )  i s  

Example 2.2: Let c10~11 be the  s e t  of continuous functions defined on 

[0,1] with norm 

I I f 1  I = SUP If(t>l 
t E [OYlI 

C[O,l] i s  a B-space but not a Hilbert  space s ince I I * I I does not s a t i s f y  

the  parallelogram l a w .  

2 Example 2.3: 

( 0 ,  271) such t h a t  i f  fcL (0,271) t h e  Lebesgue i n t e g r a l  

The inner  product of f ,  g E L (0 ,  2 r )  i s  

Let L (0,271) be the  (c lasses  o f )  r e a l  functions defined on 

2 I f ( t )  1 d t  < m. 
2 21T 

0 2 



- 9 -  

and the norm is 

0 

2 2 L (0,2a) is a Hilbert space. Any elements f,gcL ( 0 , 2 ~ )  have unique 

Fourier Series representations: 

m 

s i n  ny + b COS ny) n f(y) = 1 (an 
n=O 

OD 

g(y) = 1 (cn sin ny + d cos ny) n n=O 
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3, Linear Operators --.... ---_ _ .  . _-- - 
L e t  X and Y be vector spaces over the same f i e l d  of s c a l a r s ,  K. 

L e t  T be an onerator (or function) which maps part of X i n t o  Y. The 

domain of T, V ( T ) ,  is the se t  of a l l  XEX such t h a t  there  e x i s t s  a 

VEY f o r  which Tx = y. 

n u l l  - * . -  , space, - (or  kernel)  of T is  N(T) = { x: Tx = 0 ) .  

and T1x = T2x f o r  all xd(T1),  then T2 is  ca l l ed  an .--- extension of T1 

The range < ."_. of T ,  R(T) = (Tx: x ~ u ( T ) ) .  The 

I f  D(T1) 5 Y(T2) 

or  TI  is  ca l l ed  a r e s t r i c t i o n  of T2 and t h i s  i s  denoted as T1 c T2. 
--_I_ ~ --- 

I f  PO1)= Z)(T2) and Tlx = T2x f o r  a l l  xEo(T1), then T1 E T2 '  The 

operator T i s  ca l l ed  1:l i f  d i s t i n c t  elements i n  Z)(T) are mapmed i n t o  

d i s t i n c t  elements of f?(T). An operator T with P(T) a l i n e a r  subspace of 

X and R(T) i n  Y is ca l l ed  l i n e a r  i f f  f o r  a l l  x~zEZ?(T) and a l l  a,@&, 

T(ax+Bz)=aTx+BTz. 

______rr 

A l i n e a r  operator T is 1:l i f f  N(T) = ( 0 ) .  

I f  X and Y are normed l i n e a r  spaces and T i s  a l i nea r  onerator 
I----..--- .- -- 

with P ( T ) C  - X and R ( T ) ~ Y ,  - the  following statements are equivalent: 

(a) T is continuous a t  a point  x O d ( T ) ;  

on D(T) ;  (c)  T i s  bounded; i.e., there  e x i s t s  a number M such t h a t  

(b) T is  uniformly continuous 

f o r  a l l  xeP(T), IlTxl I 5 - MIIxl I .  
111.1 1 i s  defined by I IT1 !=  sup ( 1  lTxl I : 11x1 I 2 1, xsD(T)), 

t h i s  norm, [X,Y] ,  the  space of a l l  bounded l i n e a r  operators with 

I f  T i s  bounded, t he  norm of T, 

With 

domain X and range i n  Y is a normed l i n e a r  space. I f  X is a normed 

l i n e a r  space (not necessar i ly  complete) and Y is  a B-space [X,Y] is 

a U-space. For X 5 Y ,  [XI w i l l  be used t o  denote [X,X].  

I f  X and Y are normed l i n e a r  spaces, the  Cartesian product normed 

l i n e a r  space X x Y i s  defined as the  normed l i n e a r  space of a l l  ordered 

p a i r s  &,y} with XEX and y&Y with {xl,yl} + (x2,y2) = {x1+x2, y1 +y 1 and 
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2 112 

a{x,y) = {ax,ayl with nom given by I I{x,y}I I 
I f  X and Y are B-spaces, so is  X x Y. 

D(T) 5 X and R(T) c Y,  the  graph, G(T), of T is the  set ({x,Txl:xcp(T)) e 

Since T is l i n e a r  G(T) is a subspace of X x Y. 

Defini t ion 3.1: I f  t he  graph of T is closed i n  X x Y ,  then T is sa id  

t o  be closed i n  X. When no ambiguity is possible ,  T is  sa id  t o  be 

closed. 

Example 3.1: (See a l s o  examples 4.1, 4.3). L e t  X = Y = C[O,l] and 

l e t  C ' [ O , l ]  be the  subspace of X consis t ing of functions with continuous 

f i r s t  der ivat ives .  Define the  l i n e a r  d i f f e r e n t i a l  operator T mapping 

C'[O,l] i n t o  Y by (Tx)(t)  = x ' ( t ) ,  t c[0,1]. Then T is closed. However 

T is not  continuous, s ince  the  sequence xn(t)  = tn has the  proper t ies  

( 1  1x1 1 i- I I Y ~  I 0 

I f  T is a l i n e a r  operator with 

P 

I I T S 1  I = 1 [IO]. 

Theorem 3.1: 

Tx = y. 

T is closed i f f  x n d ( T ) ,  xn+x, Txn+y imply x d ( T )  and 

A bounded operator,  T, need not be closed but  i f  Y is a B-space, 
- - 

T has a unique extension, T, t o  P(?) = D(T) such t h a t  I [?I 1 - 1  IT1 I 
and 5 is closed. I f  p(T) is dense i n  a B-space, X, then ?c[X,Y]. 

Some unbounded operators  have closed extensions. 

T is ca l led  closable  i f  there  e x i s t s  a l i n e a r  extension of T which 

is closed i n  X. 

l i m  T% = y imply t h a t  y=O. 

A l i n e a r  operator 

T is closable  i f f  f o r  xncD(T), l i m  xn = 0 and 

Defini t ion 3.2: I f  T is a c losable  operator,  then its closed extension 
- 

T is defined as the  operator whose graph G(T) is the  closure of t he  

graph of T. 

L e t  X and Y be normed l i n e a r  spaces and T be a 1:l operator  with 

D(T) 5 X and R(T) c E Y. The inverse of T, T-l ,  is  the  map from the  
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subspace R(T) i n t o  X given by T-l(Tx) = X. 

is l i n e a r  with domain R(T) and range D(T). 

i f f  there  exists an m > 0 such t h a t  I lTxl I I, mi 1x1 I f o r  xeD(T). 

t h i s  is the case, m-l 2 I I .  
I n  a real. H-space, H=(E, ( e , . ) ) ,  a l i n e a r  operator S with domain 

P ( S )  and R ( S )  both i n  H is ca l l ed  p o s i t i v e  d e f i n i t e  i f f  there  e x i s t s  

a y > 0 such t h a t  (Sx, x) 2 yl 1x1 I 
symmetric if ( S X , ~ )  = (x,Sy) f o r  x , y d ( S ) .  A bounded operator  

S €[HI is  ca l l ed  RSPD i f  i t  is real, symmetric, pos i t i ve  de f in i t e .  

This allows a charac te r iza t ion  of equivalent inner  products by a 

spec ia l  case of the  Lax-Milgram theorem [ lo] .  

Theorem 3.2: 

are equivalent i f f  there  exists an RSPD S &[HI] such t h a t  

(x,Y), = (x9sy)1 = ( S X , Y ) ~  f o r  a l l  x,yeH1. 

I f  T is linear, then T- l  

T"l ex is t s  and is continuous 

I f  

T'l is closed i f f  T is closed. 

2 f o r  a l l  xeD(S). S i s  ca l l ed  

The inner  products i n  H1 = (E, (-,.),) and H2=(E, ( * 9 * ) , )  
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4 ,  Spec t ra l  Theory 

L e t  T be a l i nea r  operator with O(T)  and R ( T )  both i n  a normed 

The d i s t r ibu t ion  of values X f o r  which the l i n e a r  l i nea r  space X. 

operator ( X I  - T )  has an inverse and t h e  proper t ies  of the inverse 

when it e x i s t s  are ca l led  the  spec t r a l  theory f o r  the operator T. 

Additional d e t a i l s  can be found i n  [lo, 131. 

Definit ion 4.1: 

has a continuous inverse (X0I-T)-l ,  X 

If Xo i s  such t h a t  R( XoI-T) i s  dense i n  X and AoI-T 

is  said t o  be i n  the resolvent  
0 

e, p ( T )  of T; t he  inverse (X0I-T)-l i s  denoted by R(Xo; T )  and i s  

ca l led  t h e  resolvent ( a t  X o )  of T. 

p ( T )  form a set, u ( T )  ca l led  the  spectrum of T. 

Theorem 4.1: 

D(T) and R ( T )  both i n  X. Then fo r  any k p ( T ) ,  t he  resolvent R (  A;T) 

i s  an everywhere defined continuous l i n e a r  operator.  The resolvent 

set, p ( T )  i s  an open set of the  complex plane. 

(maximal connected subset)  of p ( T ) ,  R(A;T) i s  a holomorphic function 

of T, i .e. R(A;T) can be expanded i n  a convergent power series i n  

X-Xo f o r  Xo"p(T) and Ih-Xol su f f i c i en t ly  small. 

the  power series are i n  [XI. 

Example 4.1: 

and ??(A) C - H. 
any Xdu(A), R(X;  A )  i s  bounded and i s  defined on a l l  of H. 

bounded and defined on a l l  of H, i s  closed. 

Example 4.2: 

s ince  - = Ax always has a solution for every real A. 

All complex numbers, X not i n  

L e t  X be a B-space and T a closed l i nea r  operator with 

I n  each component 

The coef f ic ien ts  of 

L e t  H = Rn and l e t  A be an nxn real matrix. D(A)  = H 

X n ( A ) ) .  For The spectrum of A, o(A) = {A 1(~), 0 

A, being 

In example 3.1 the spectrum of T i s  the whole real line 
dx 
dt 
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2 Example 4.3: Let H = L ( 0 %  2x1 (see example 2.3) and define H by P 

H is dense in H. Define A by p ( A )  = HJ. and 
P 

co 

A f  = - 1 (n2 + 1) (an sin ny + bn cos ny) fED(A). 
n=O 

A is unbounded but closed. A has a continuous inverse since 

IlAflI 2 I I f l I  
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5. Semi-Groups and Groups 
--I_L_- 

I n  order t o  examine the  s t a b i l i t y  of so lu t ions  t o  par t ia l  

d i f f e r e n t i a l  equations,  it is necessary t o  be able  t o  charac te r ize  

the proper t ies  of solut ions.  This is  done by considering the proper- 

t ies  of semigroups and groups of c l a s s  (C ) o r  the s t rongly continuous 0 

semi-groups and groups. I n  the  following,reference t o  a semi-group 

(or  group) implies t he  strong cont inui ty  i n  ( i i i ) 9  Defini t ion 5.1 

(Defini t ion 5.2). Further d e t a i l s  can be found i n  [10,13]. In t h e  

following X i s  assumed t o  be a real B-space and H, a real H-space. 

Defini t ion 5.1: 

C [ X ]  = is  cal led a semi-group i f f  the following conditions hold: 

For each t E[O,-), le t  S t ~ [ X ] .  The family {St;t lO) - 

= s s ( 3  Ss+t 

f o r  t > O  and a l l  XEX. 

Defini t ion 5.2: 

( i i ) ;  and ( i i i )  f o r  -DJ < t 

ca l led  a group. 

f o r  s,t 2 - 0; ( i i )  so = I; ( i i i )  l i m  I ( s ~ x - s ~  xll=o 
t+to 0 

s t  

0 

I f  {Gt; -m < t < m )  5 [X] s a t i s f i e s  (i) f o r  - m < s , t  <m 
_IU__-_.- 

< m and a l l  XEX, {Gt ;  -m < t < m )  i s  
0 

- 
It i s  clear t h a t  i f  {Gt ;  -Q) < t < is a groupp, then { G t ; t  2 0 )  - 

and {Gt;  t 2 0 1 are semi-groups, 

norm s a t i s f i e s  f o r  some M > 1 and €3 > 0 

If (St; t 2 - 0) is a semi-grow, i t s  

= 

I f  6 = 0, {St} is s a i d  t o  be 5uibounded and i f  i n  addi t ion M = 1, 
-I_ 

it  is ca l l ed  contract ive.  I f  B < 0, {St)  i s  ca l led  negative and 
I__- * e-....- -. 

i f  i n  addi t ion M = 1, i t  i s  ca l led  negative contract ive.  I n  -- 
general ,  if I G t ;  -m < t < -1 is a group, 

f o r  some M 1 1 and some B > 0, 

f o r  the  semi-group { G  t 2 0). If {Gt; - t 9  

The same terminology as above is used 

C t < m) is a group, then 
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f o r  each t ,  Gi’ = St and both are continuous l inear  transformations 

of X i n t o  X. 

Defini t ion 5.3: The in f in i t e s ima l  generator,  A, of t h e  semi-group 

{St; t 2 - 0 )  is  defined by 

Ax = l i m  [h-l[Shx - x ) ]  (5.3) 
h 4 ’  

f o r  a l l  x E X such tha t  the l i m i t  e x i s t s .  

It follows [10,13] t h a t  A i s  a closed l i n e a r  operator wi th  domain 

D ( A )  dense i n  X w i t h  OED(A).  Moreover, i f  X E P ( A ) ¶  then StxsP(A) f o r  

I n  order  t o  character ize  whether an operator A generates a semi-group 

the next theorem i s  needed. 

Theorem 5.1: A closed l i n e a r  operator,  A, w i t h  dense domain and w i t h  

range i n  X i s  t h e  in f in i t e s ima l  generator of a unique sed-group 

(St; t 2 0 )  sa t i s fy ing  (5.1)  f o r  M 2 - 1 and B iff there exist real 

numbers M and f3 such t h a t  for  every in teger  n > B ,  n E p ( A )  and 

- 

{Gt; -- < t < 

In1 > B,  n > 0 ,  n EP(A)  and replacing (5 .5)  by: 

s a t i s fy ing  (5.2) by replacing the conditions on n by, 

< 
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If A generates a semigroup sa t i s fy ing  (5.1)s then A-41 generates 

a semigroup, T t  s a t i s fy ing  

Conditions (1-4) hold of course for the  semi-group {G * t 2 0 )  and 

simple modifications hold fo r  {Gt; t 5 - 0 )  since (-A) generates 

t’ - 

A l l  of the conditions of Theorem 5.1 are d i f f i c u l t  t o  ve r i fy  i n  

prac t ice .  The following and general izat ions of these are more useful .  

Additional details can be found i n  [10,29-32]. 

Definit ion 5.4: 

i n  a real H-space. A i s  ca l led  d iss ipa t ive  w i t h  respect  t o  the inner  

product ( Y 0 )  i f  (Ax, x) I - 0 whenever xeD(A) and s t r i c t l y  d i s s ipa t ive  

i f  there e x i s t s  a y > 0 such tha t  (Ax,x) 5 - y (x,x)  f o r  XED(A) .  

Theorem 5.2 [lo]: Let A be a l i n e a r  operator w i t h  domain and range i n  

H such tha t  D(A)  i s  dense i n  H. I f  A i s  ( s t r i c t l y )  d i s s ipa t ive  and 

R ( I ( l - y ) - A )  = H where y > 0 i s  a constant,  then A generates a (negative) 

contract ive semi-group i n  H and h&.p(A) f o r  ( R e  h > -y) Re h > 0 ,  

L e t  A be a l i n e a r  operator w i t h  D ( A )  and R ( A )  both 

- 

The last theorem leads t o  a r e s u l t  which gives necessary and su f f i -  

c i en t  conditions f o r  A t o  generate a negative contract ive group i n  H.  

Theorem 5.3 [32] : 

real H-space, H=(E, ( 4 9 0 ) ) such tha t  p(A) i s  dense i n  H. 

L e t  A be a l i n e a r  operator with D(A)  and R( A )  i n  a 

Then A 

generates a group ( G  

negative contract ive semi-group w i t h  respect  t o  a norm, I I e I I 1, induced 

by an equj.valent inner  product, ( 0 9  Il9 i f f  there e x i s t  pos i t ive  6 ,  y 

with Q) > 6 2 y > 0 such that 

-Q) C t < -J) i n  H such t h a t  {Gt; t 2 0 )  i s  a t; - 

- 
(xED(A) (5.7) 2 - 61 1x1 l 2  f ( A x 9  XI,  I - - Y l  1x1 I 
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and 

?Z(I(l-y)-A) H; ?Z(I(1+6) + A) = H. (5.8) 

I n  addi t ion X&p(A) f o r  R e  X c - 6 and R e  X > - y e  

Example 5.1: 

notat ions of examples 2.1 and 4.1. This follows 

from the  f a c t  t h a t  f o r  B > 0 s u f f i c i e n t l y  large,(A-61) and (-A-BI) are 

d i s s ipa t ive  

L e t  H = Rn and l e t  A be a real m n  matrix and use t h e  

A generates a group. 

2 
((+A-81) x,x) = (+Ax,x) - BI 1x1 l 2  5 ( 1  IAl 1-B) 11x1 I 

For B > I IAI I ,  (+A-61) is d i s s ipa t ive  and therefore  by (5.61, both A 

and -A are generators of uniquely determined semigroups, {e; t 2 0) 
and { T i ;  t 2 01, which s a t i s f y  I lTzl  I 2 e l l ~ l l t  , I I T ~ I  I 2 eI 1'1 It f o r  

t 2 0. Thus A generates a group {Gt; -m c t -1 with 

I n  fact, the group t h a t  A generates is  {Gt = eAt; -QD c t < -1. 

Example 5.2: Consider t he  d.e. 

au au 
a t  ax - = a u + b -  

where a and b are constants. L 

(-OY < t c w) 

t 0 be the  B-space of 11 re 1 

continuously d i f f e ren t i ab le  functions defined f o r  x E. R such t h a t  

+(x) + c+* a f a n i t e  constant,  as IxI-)oD. L e t  1 1 0 1  I = ::E I 4 W  I * 
For any CgsQ one can def ine a so lu t ion  u(4, t )  with u(+,O) = +(x)-- 

i n  f a c t ,  

(*I u(4,t)  = e 4(x+bt) 

The so lu t ions  of (*I f o r  ~ E Q  form a one-parameter family of trans- 

formations of the  space @ i n t o  i t s e l f .  

a t  

Gt defined by 

Gt  4 = u(4 , t )  (-- < t w) 

form a group of operators.  

contract ive semi-group. 

I f  a c 0 then {Gt ; t 1 0 )  is a negative 
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Example 5.3: 

defined with range in H - L2(0, 2~). 

inverse on H. 

a negative contractive semigroup, IS,; t > 0). 

Using the results of examples 2.3 and 4 . 3 ,  A is densely 

(AI - A) for X > 0 has a continuous 

Thus A generates A is dissipative since (Af, f) 2 -(f,f). 

In fact St is given by 

0 

(an sin ny + bn cos ny) - (n2+1) t stf = 1 e 
n=0 

and 

{St; t 2 0) can not be extended to a group, since for fixed t > 0, 

defining fn(y) - sin n y, I lfnl ]=le Stfn = e -(n2+1)tsin n y and 
-1 I lStfnl I -+ 

not exist. 

0 as n -+ 00 and therefore a continuous inverse (St) 

Thus S 

does 

can not be extended to a group. t 
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6. Op e ra to r  D i f f e ren t i a l  Equations and S t a b i l i t y  

L e t  X be a B-space and l e t  A be a l i n e a r  operator  with a(A)  and 

R ( A )  i n  X. Consider the operator d i f f e r e n t i a l  equation 

dx/dt = Ax (XED (A) 1 (6 1) 

with i n i t i a l  condition x(0)  = x~ED(A). 

i n i t i a l  condition x~ED(A) w i l l  be designated by $ ( t i  x0). I f  A is 

the in f in i t e s ima l  generator of a semi-group (St; t 1 01, then from 

(5.4) and ( i i )  of Def in i t ion  5.1, i t  follows t h a t  $(t; xo) = Stxo 

f o r  x~ED(A) and t ?; 0. 

of a group (G - - - c t < 

I n  these  cases, x = 0 is  a so lu t ion  of (6.1) and s ince  (6.1) is 

l i n e a r ,  any so lu t ion  may be referenced t o  x = 0 by a simple trans- 

l a t ion .  The following de f in i t i ons  are d i r e c t  genera l iza t ions  from 

c l a s s i c a l  Lyapunov s t a b i l i t y  theory e 

A so lu t ion  t o  (6.1) with 

Similar ly  i f  A is the  in f in i t e s ima l  generator 

$ ( t ;  xo) = Gtxo f o r  x~EZ;)(A) and --<t<-. t '  

The n u l l  so lu t ion ,  x = 0, of (6.1) is __c_ s t a b l e  i f ,  given an E > 0, 

a 

1 l$(t;xo) 1 I < E f o r  t 2 - 0, 
t-, x = 0 i s  asymptotically s tab le .  I f  i n  addi t ion ,  there  e x i s t  

pos i t i ve  numbers M, 6 %  T such t h a t  I l$(t ;xo) I I =s < M exp(-Bt) I Ixol I 
f o r  t t> T, then x = 0 i s  exponentially asymptotically s t ab le .  

Theorem 6.1: 

group) then: 

f o r  B > 0 implies exponential  asymptotic s t a b i l i t y .  

6 > 0 can be found such t h a t  I Ixo I 1 < 6 and x~ED(A) implies 

I f  i n  addi t ion  l i m  I I$(t;xd I I = 0 as 

If  A i s  the  generator of a semi-group {St;  t _I > 0) (OS 

( i )  I ISt[ I 5, M implies s t a b i l i t y ;  and ( i i )  I IStl I < M exp (-Bt) = 

This theorem is based on knowledge of the  so lu t ions  t o  (6.1) 

The "Second and thus corresponds t o  the  "Fi rs t  Method" of Lyapunov. 

Method" o r  "Direct Method" of Lyapunov is based on knowledge of A 
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and certain €unctions cal led "Lyapunov functions" i n  f i n i t e  dimensional 

spaces. In B-spaces and in  particular €1-spaces, these become 

"Lyapunov functionals" . 
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7. Lyapunov Functionals and S t a b i l i t y  

Roughly speaking, t h e  d i r e c t  method of Lyapunov cons is t s  of 

f inding a func t iona l  v(x) such t h a t  v(x) > 0,  x # 0 and G(x), the  

der iva t ive  of v(x) along so lu t ions  t o  (6.1) s a t i s f i e s  +(x) 5 - 0 f o r  

s t a b i l i t y  and +(x) -k v(x)  (k > 0) f o r  exponential asymptotic 

s t a b i l i t y .  To obtain such a funct ional  v(x) i n  a real  H-space, a 

defining b i l i nea r  func t iona l  is  f i r s t  obtained. 

Defini t ion 7.1: L e t  H = (E ,  (.,.)) be a real  Hi lber t  Space. A 

defining b i l i nea r  func t iona l ,  V(.,e), is any inner  product equivalent 

t o  (. .) i n  H. Thus V( .  .) = (. , where (. , .) is equivalent t o  

(.,.) i n  H. 

Theorem 7.1: V(.,.) is a defining b i l i n e a r  func t iona l  i n  H i f f  t he re  

ex is t s  an RSPD l inea r  transformation PE[H] such t h a t  V(x,y) = (x,Py)= 

1 

(PX,Y) 

This theorem is a d i r e c t  r e s u l t  of Defini t ion 7.1 and Theorem 3.2. 

From V(x,y) the  Lyapunov funct ional ,  v(x)  w i l l  be obtained and it  w i l l  

be a quadrat ic  Lyapunov funct ional  j u s t  as f o r  a l i nea r  system i n  a 

f i n i t e  dimensional space, the Lyapunov funct ion is a quadrat ic  form, 

Defini t ion 7.2: The function v(x) = V(x,x) f o r  XEH, where V(.,.) is 

a defining b i l i nea r  funct ional  i n  H, is ca l led  a (quadratic) Lyapunov 

funct ional  i n  H. 

Defini t ion 7.3: I f  + ( t  ;x) is  a so lu t ion  t o  (6.1), the  der iva t ive  of 

v(x) , ;(x) is defined by 

f o r  a l l  x such t h a t  t h i s  l i m i t  ex i s t s .  
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Theorem 7 .2 :  L e t  A be t h e  generator of a semi-group (or  group); then 

G(x) is defined f o r  a l l  xeD(A) and is given by 

Corollary: Under the  hypotheses of t he  theorem 

;(x) = 2 ( A x ,  xI1 = 2(PAx, x) (xED(A)) ( 7 . 3 )  

where (.,.) is an inner  product equivalent t o  (.,*) and PE[H] is RSPD. 1 

Theorem 7 . 3 :  

condition f o r  s t a b i l i t y  (exponential  asymptotic s t a b i l i t y )  is t h a t  

I f  A is the generator of a semi-group, a s u f f i c i e n t  

there  e x i s t  a Lyapunov func t iona l  v(x) t he  de r iva t ive  of which 

S(X) < 0 (+(XI 6 - y 11x1 I 2 
(Y > 0 ) ) f o r  XED(A). = 

Theorem 7 . 4 :  I f  A is the  generator of a group, a necessary and 

s u f f i c i e n t  condition f o r  exponential  asymptotic s t a b i l i t y  is t h a t  

there  e x i s t  a Lyapunov func t iona l  v(x) such t h a t  ;(x) s a t i s f i e s  f o r  

- > a Z B > O  

-av(x) 2 +(XI 2 -6 v(x)  (xEIXA)) (7  4) 

The proof of Theorem 7 . 2  follows from Def in i t ion  7 . 3  and the  f a c t  

t h a t  V(y,y) - V(x,x) = V(y+x, y-x). 

Defint t ion 7.1. Theorem 7 . 3  follows from Theorem 5 . 2  and Defini t ion 

The coro l la ry  follows from 

7 . 1 .  

Defini t ion 7 . 1 .  The necessi ty  follows from the f a c t  t ha t  i f  

The suf f ic iency  of Theorem 7 . 4  follows from Theorem 5 , 3  and 

(Gt ;  - 03 < t < -1 is  a negative group, then there  exist four pos i t i ve  

constants 00 > M 1 1; m > 0, OJ > y 2 8 > 0 such tha t  

M exP(-Yt) 11x1 I 2 I l G t X l  I 2 M exP(-6t) 11x1 I(xc:H) (7 .5 )  

and the d e f i n i t i o n  of V(x,y) by 
aD 

V(X,Y) = (Gtx9 Gty)dt (x,ysH) (7 .6 )  
0 

where the i n t e g r a l  may be taken as an  improper Riemann i n t e g r a l  and 

(. , .) is  the  inner  product i n  H (see theorem 5.3 and [32 ] f o r  d e t a i l s ) .  
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Remarks: In theorems 7.3 and 7.4, if the hypothesis that A generatga 

a group or semigroup is replaced by ones similar to those of theorems 

5.2 and 5 . 3 ,  then this theory also assures existence of solutions, The 

extra hypotheses required, for example, are that Q(A) is dense in H with 

R ( A )  in H and that R(1-A) = H e  

these always hold and consequently are never explicitly stated. 

In the case of H being finite dimensional, 
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8. Applications 

Example 8.1: 

t h a t  i f  H = Rn and A is  an n x n real matrix, A i s  the  generator of 

a group {Gt; -- t C -1 with Gt = eAt s a t i s f y i n g  

The r e s u l t s  of examples 2.1, 4 . 1  and 5 . 1  have shown 

Theorem 7.4 gives a necessary and s u f f i c i e n t  condition fo r  A t o  

generate an exponentially asymptotically stable semi-group 

{Gt; t 2 - 0). 

product ( 0 3  0 )  of Rn. 

t he  l e f t  half  complex plane, A is  a s t ab le  matrix, and must generate 

A need not be d i s s ipa t ive  with respect  t o  the  inner 

However i f  t h e  spectrum of A i s  r e s t r i c t e d  t o  

an exponentially asymptotically s t a b l e  semi-group. Thus, an RSPD 

matrix P i s  sought so t h a t  A is  d i s s ipa t ive  with respect  t o  the  

equivalent inner product ( * s o  where 11 

(X,Y) ,  = (PX¶Y) = X ' P Y  

Thus 

2(Ax,xIl = 2(PAx,x) = 2(x'A'x) = x'(A'P + PA)x 

Se t t i ng  A'P + PA = -R where R i s  RSPD y ie lds  the  Lyapunov S t a b i l i t y  

Theorem for  f = Ax, which i s  A i s  a s t a b l e  matrix i f f  t h e  solut ion P 

t o  A'P + PA = -R i s  uniquely determined by R and i s  RSPD whenever R i s  

RSPD. The def ining b i l i n e a r  function i s  V(x,y) = (x,y), = x'Py, t h e  

quadratic Lyapunov function i s  v (x )  = (x,x), = X'PX and i t s  der iva t ive  

i s  ;(x) = ~ ( A X , X ) ~  = -x'Rx. 

concept of equivalent inner product i n  r e l a t i o n  t o  Lyapunov S t a b i l i t y  

This i l l u s t r a t e s  the  importance of the  

Theory e 

2 A s  a spec i f i c  example, l e t  H = R with inner product (x ,y)  = x'y= 

I n  2 = Ax, l e t  
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so A should be a s t a b l e  matrix. 

respect  t o  ( - 9 . )  s ince  (Ax,x) - x'Ax = -x1x2-3x: is an inde f in i t e  

quadratic form. 

However, A is not d i s s ipa t ive  with 

However i f  A'P + PA = -21 is solved f o r  P, P is 

unique and 

2.5 0.5 
p = [ o.5 oe5]  ; a(P) = 10.382, 2.618) 

so t h a t  P is RSPD implying A is  a s t a b l e  matrix. A is d i s s ipa t ive  

and ( A ~ , X ) ~  = -(x,x). From example 2.1, i t  follows tha t  

- 2 . 6 1 8 ( ~ , ~ ) ~  5 ( A X , X ) ~  I -0 .382 (x,x), 

and therefore,  i f  R e  X > -.382 o r  R e  X < -2.618, X E p(A) and R(X;A) 

is a bounded operator defined on a l l  of H. It fu r the r  follows t h a t  

A t  -0.382t and IIeAtlI 2.61 e -0.382t . f o r  t I, 09 l le I l l  2 e 3c 

2 Fxample 8.2: 

2.3, 4.3, 5.3, it is clear t h a t  the adequate Lyapunov funct ional  is 

defined by V(x,y) = (x,y) where ( 0 9 . )  is the  inner  product defined f o r  

L2(0, 2n). Thus G(f) I -v(f)  and therefore  I I S t l I  PI < e-t. 

Let t ing H = L (0, 2r)  and using the  results of examples 
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9. P a r t i a l  Di f fe ren t ia l  Operators and Sobolev Spaces 

Most of the  content of t h i s  sect ion i s  taken from Dunford and 

Schwartz [ l3 ] .  While there  are other  approaches t o  the  f i n a l  formula- 

t i on  of t h e  theorems quoted here,  [15-25], t h i s  pa r t i cu la r  formulation 

seems bes t  su i ted  t o  the spec i f i c  appl icat ion of the theory developed. 

The object  i s  t o  first define what i s  meant by a formal PDO ( p a r t i a l  

d i f f e r e n t i a l  operator)  defined i n  subsets of En. 

p roper t ies  of spec i f ic  formal PDO's, closed operators i n  appropriate 

Hilbert Spaces are obtained. 

become the spaces introduced by Sobolev i n  1935 and hence a re  usually 

ca l led  Sobolev spaces. These spaces can be obtained i n  a var ie ty  of 

ways, e.g. by funct ional  completion of incomplete function spaces 

[15,17,19,20,21], o r  by the  introduction of d i s t r ibu t ions  [13,18,24,25]. 

I n  some instances there  are subt le  differences i n  the  propert ies  which 

may be imputed t o  these spaces using the various approaches, but there  

is a common theory f o r  t h e  r e s t r i c t e d  c l a s s  considered here. 

the in t e re s t ed  reader should consult  the  references l i s t e d .  

9.1. Subsets of R" 

Based on pa r t i cu la r  

The domains and rmges  of these operators 

For d e t a i l s ,  

In  order t o  obtain a consis tent  notation and t o  avoid r epe t i t i on  i n  

the theorems quoted, I, Q, r ,  subsets of Rn, r e a l  Euclidean n-space, are 

defined. The essence of t h e  approach is  t o  define an open subset,  I CZ R", 

i n  which a formal PDO i s  defined. I i s  assumed t o  be connected. la G I  i s  

a bounded open subset of I such t h a t  Q, i t s  closure,  i s  a proper subset of 

I. 

i n  an open set  containing a. 
smooth" boundary, 

This assures t h a t  any formal p a r t i a l  d i f f e r e n t i a l  operator is  defined 

Next, it i s  assumed t h a t  Q has a "suf f ic ien t ly  

such t h a t  no point i n  r is  i n t e r i o r  t o  t h e  closure of 
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Q. 

be made mathematically precise  [13,19,20,22,24,25]. Such a domain 

satisfies the  "cone condition" of Sobolev [15,17,19,20], i s  properly 

regular" according t o  Fichera [22] or  i s  "tres regul ie r"  according t o  

Lions [24]. According t o  [13] ,  a s u f f i c i e n t l y  smooth boundary of t h i s  

type can contain "corners", "edges", e t c .  as long as these configurations 

a r e  l o c a l l y  equivalent t o  t h e  in te rsec t ion  of a f i n i t e  number of hyperplanes 

i n  En. Some of the  def in i t ions  and theorems below w i l l  hold even i f  $2 does 

- not have a s u f f i c i e n t l y  smooth boundary. 

9.2. Formal P a r t i a l  Di f fe ren t ia l  Operators 

The descr ipt ion of a domain with s u f f i c i e n t l y  smooth boundary cqn 

11 

Let I Rn be as described i n  the preceding section. L e t  J be an 

n-vector w i t h  non-negative i n t e g r a l  components 

Designate by I JI the  sum 

J The symbol 3 means p a r t i a l  

of y E R i . e .  for (9.1) n 

n 

i=l 
I J I  = c J i  

d i f f e r e n t i a t i o n  with respect t o  t h e  components 

If I J I  = 0, aJ = 1. Let a,(y) be a real scalar function of y E I which 
is infinitely (or sufficiently) differentiable in I. 

Definition: [13] If m is  a pos i t ive  in teger ,  then a real formal p a r t i a l  

d i f f e r e n t i a l  operator,  T, defined i n  I is, i n  general, given by 
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The order of T i s  m. 

d i f f e r e n t i a l  operator defined by 

The formal adjoint  of T ,  designated by T*, is  t h e  

Since T is  r e a l ,  T* is real. 

adjoint .  

adjoint  of T w i t h  respect  t o  the L ( a )  inner product. 

9.3. Se t s  of Functions 

If 'c = T*, then T i s  ca l led  formally Self 

Actually, as w i l l  be made c l ea r  i n  a later p a r t ,  T* i s  t h e  formal 

2 

k The set  of C (I)  cons is t s  of a l l  those real sca l a r  functions,  f ( y )  

J y E I, such that every der ivat ive a f ,  IJI 5 k is  defined and continuous 

i n  I. 

closure of the set w i t h  f # 0 is compact and a proper subset of I ,  i.e. 

the set of functions i n  C ( I )  w i t h  compact support i n  I. 

and Cm(I) are correspondingly defined. The set  Ck(I') i s  t h e  set i n  C (I) 

having a l l  der ivat ives  up t o  and including k i n  I, such t h a t  each p a r t i a l  

der ivat ive has a continuous extension t o  I. If f ( y )  E Ck(l), then aJf(y) 

i s  defined, f o r  y E I' and IJI - 5 k, as the  extension by cont inui ty  of a f ( y )  

from I t o  I'. Then C"(P) =fiCk(I), CI(l) = C:(I), Ci(I') = Co(I). The sets 
c"(Q), ~"('i), c~(Q), ck('i), c:(Q) = c;('i), c ~ ( Q )  = c k (3) are s imi la r ly  

defined, Each of these sets w i t h  the  usual def in i t ions  of addi t ion and 

- 
k The set @(I) cons is t s  of a l l  functions i n  C (I) such t h a t  the  

0 

k The sets CoD(I) 

k 
0 

J 

k 
k=O 

0 

sca la r  mult ipl icat ion become l i n e a r  vector spaces. 

The Banach Space $(a) 
k Since fi i s  compact we may define .a norm f o r  the C (E) functions f o r  

O z k < =  by - 
(9.6) J I I f 1  lek(<)= isupla f ( Y )  1 ;  I J I  5 k, Y E 8) 

Endowed with t h i s  norm, Ck(E) is  a Banach space and the  C"(5) functions 

are dense i n  Ck(ii) with respect t o  I I e I ICk(c) 
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2 The Hi lber t  Space L ( I )  

Let dy = dyl dy2. e .dy be the Lebesgue measure i n  Rn. Designate by n 
2 L (I) t h e  space of ( c l a s ses  o f )  real  functions,  f ,  which are square 

in tegrable  on I. 

as 

As indicated,  t h e  

f and g belong t o  

The norm and inner  product 

(f,do = I f ( Y )  
I 

2 are defined f o r  f ,  g E. L (I) 

2 elements of L ( I )  are equivalence c lasses  of functions; 

t h e  same equivalence c l a s s  i f f  f ( y )  = g(y )  almost 

everywhere i n  I, i.e. 

2 I ( f  - g) dy = 0 
I 

The C o D ( I )  funct ions are dense i n  L 2 ( I ) ,  i .e. if the  C E ( 1 )  functions 
0 

are completed i n  t h e  11.1  I norm, we have 

hold f o r  L2( Q) and C:(R) = L ( Q )  . 
9.4. In tegra t ion  by Par t s  

= L 2 ( I ) .  Similar  de f in i t i ons  
0 

2 

If T i s  a formal p a r t i a l  d i f f e r e n t i a l  operator of order rn i n  I ,  then 

f o r  any f E Crn(?i), T f  i s  continuous as i s  T * f .  With domain Q and i ts  

boundary l' as defined i n  Section 9.1, t he  Green-Gauss i d e n t i t y  [14,22] 

holds f o r  t h e  domain. This i d e n t i t y  can be s t a t e d  as follows: 

Green-Gauss Identity-: 

Given any f ,  g E Cm(D) ,  and T of order m, then 

/[g(Tf) - f ( ~ * g ) I . @  = H(f ,g )d ( r )  (9.9) 
R r 

where H(f,g) i s  a b i l i n e a r  d i f f e r e n t i a l  operator i n  f and g of order a t  

most m - 1 and d ( r )  i s  the  surface area measure of I'. 
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Second Order P a r t i a l  D i f f e ren t i a l  Operator 

As a spec i f ic  example [17], i f  T i s  

g(y)  are i n  C 2 ( a ) ,  T f i s  given by 

of order 2 i n  I and f ( y )  and 

and .r*g i s  given by 

- 1  a ( b j ” ) + c g  (9.11) 
j=1 a Y j  

It may be assumed without loss of genera l i ty  t h a t  a ( y )  = a ( y ) .  Then, 

as can be ve r i f i ed  by d i r e c t  d i f f e ren t i a t ion ,  
i d  j i  

In tegra t ing  both s ides  of (9.11) as i n  (9.8) y i e l d s  

where 

(9.13) 

(9.14) 

(9.15) 

where I, i s  t h e  u n i t  outward normal t o  l’ and cos (v,y, )  i s  the  cosine of 
I 

t he  angle between the  outward normal, v ,  and t h e  coordinate 

If 

ax i s ,  yi. 

(9.16) 

then Q = 0, and T = T * ~  t h a t  i s  T i s  formally self ad jo in t  and can be 
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For convenience 

of t he  coe f f i c i en t s  

A = A' = ( ai3 ( y ) )  is  t h e  nxn symmetric matrix composed 

a i j ( y )  of t he  second order terms i n  (9 .9) .  

In tegra t ion  by Pa r t s  

It is  possible  under some circumstances tha t  t h e  i n t e g r a l  on t h e  

r i g h t  of (9.8) i s  zero. 

and g E Cm(E)flCm-'(Q).  Obviously i f  g E C:-'(Q), g and a l l  derivatives 

This  happens, fo r  example whenever f E Cm(f i )  

0 

up t o  order m-1 

is zero along r 

of g vanish outs ide a compact subset of il implying H(f,g) 

This last formula is the usual  in tegra t ion  by p a r t s  formula. 

noted t h a t  T could be any formal PDO; i n  pa r t i cu la r ,  T could be of order 

one. If t h i s  is  the  case, w e  have 

It i s  t o  be 

Thus, i f  Q is  zero on r ,  we obtain (9.17) 

Note t h a t  i f  f ,  g e C i ( Q ) ,  
I g(Tf) dy = 1 f(T*g) dy 
I I 

or i n  terms of the L ( Q )  inner product ( 0 9 . )  defined i n  (9.6), 2 

In t eg ra l  Inegual i t iee  

A w e l l  known i n t e g r a l  inequal i ty  i s  t h a t  of Poincar9ee If 

u ( y >  E c ~ ( ~ ) A c ~ ( Q ) ~  then [271 

(9.19) 

(9 .20 )  
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where X1 is  the  smallest real number such t h a t  there  

t o  

i s  a smooth solut ion 

(9.21) 

An estimate f o r  X1 can be obtained [ 27 ]  from 5 d" where d i s  the  
hl - 

maximum length of t he  edges of any rectangle  R 3  E. 

(9.22) 
9 

9.5. Di r ich le t  Boundary Conditions 

The pa r t i cu la r  PDO's considered l a t e r  w i l l  be those sa t i s fy ing  

Dir ich le t  boundary conditions which represent a f a i r l y  broad c l a s s  of 

physical  problems. 

j Definit ion: L e t  Q and r be as i n  9.1. 

order der ivat ive taken i n  a d i r ec t ion  normal t o  r .  
and a f ( y )  vanishes f o r  a l l  y d' and IJI 5 k-1, f is said t o  s a t i s f y  

a Dir ich le t  condition of order k on I' and t h i s  is designated by 

Let ( a u ( r ) )  designate the jth 

If f ( y )  E Ck' l (a)  

J - 

( a u ( r ) l J f ( y )  = 0 Y E r  0 ZIJI< - k-1 

(9.23) 

Remark: 

coordinate axes, yi , condition (9.22) becomes the  more familiar 

If a i s  a closed rectangle  w i t h  s ides ,  Ti,  perpendicular t o  the 

0 2 j 5 k-1 - 
i=l, 2, ..., n 

(9.24) 

The formula f o r  in tegra t ion  by pa r t s  (9.7) i s  va l id  i f  T i s  of order 

m and e i t h e r  f or  g o r  both s a t i s f y  a Dir ich le t  boundary condition of order 

m on r .  
In  the case T i s  of even order 2m and f and g both s a t i s f y  a Dir ich le t  

boundary condition of order m, then the  Green-Gauss i d e n i t i t y  (9.8) holds 
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where H(f,g) is a bilinear differential operator in f and g of order, at 

most m. 

(9 .18 ) .  

This can be easily verified by the integration by parts formula 

9 e6 Distributions 

There are at least two ways of introducing Sobolev spaces: the first 

is by functional completion of certain sets of functions according to some 

norm and the second is by the introduction of distributions and then the 

restriction of distributions to form certain subsets which become the 

Sobolev spaces. We choose the latter because there is a fairly complete 

theory relating formal PDO's and closed operators obtained through dis- 

tributions [13]. 

Definition: 

If there exists a compact subset, K, of I such that all of the functions, 

vanish outside of K and if in addition @n+$ in the topology of C:(I) (the 

topology can be precisely defined [13]) then we denote this by 

Let { $  1 be a sequence of functions in C:(I) and let $ E CI(I). n 

'n 9 

Definition: A linear functional, F, defined on C:(I) such that F(+n)+F(~) 

whenever I$ +I# in I is called a distribution in I. n* 
Definition: The class of a11 distributions in I will be denoted by D(1). 

In order to connect a distribution, F, to a Lebesgue integrable function, 

f, in I we have the next definition. 

Definition: Let f be a function in I which is Lebesgue integrable over every 

compact subset of I. Then the distribution F defined by 

F ( 4 )  = 1 4(y) f(y) dy ( 4  E c p )  (9,25) 
I 

is called the distribution corresponding to f. A distribution, F, which 
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corresponds to a function, f, in this sense is said to be a function. 

If f is in L2(I), Cm(l), Cz(I), etc., F will be said to be in L2(I), 

c~(I), c:(I), etc. 

In general, we simply identify a distribution which is a function 

with the function t o  which it corresponds. There is a unique distribu- 

tion associated with any two functions equal almost everywhere in a 

given sense, for example in L2(I). 

function, it corresponds to a unique continuous function. 

If F corresponds to any continuous 

Corresponding to the concept of "generalized function" is that of 

"generalized derivative". 

and T is a formal PDO of order m. Thus rf is a function E C(1)  and 

We first consider the case where f E Cm(I) 

hence there is a distribution which we will call TF corresponding to 

Tf. 

(.rF) ($1 = f (rf) (Y) $(y)dy (4 E CI(I)) (9.26) 
I 

By (9.18) it immediately follows that 

( 9 . 2 7 )  (TF)($) - f f(y) ( T * $ )  (Y) dY = F(T*$) 
I 

and hence, "generalized differentiation" is defined by 

(TF) ($1 = F(T*$) (4 E c p )  (9.28) 

Thus, "generalized differentiation" is defined whether F corresponds 

to a function f or is a distribution. 
2 In order to determine if F corresponds to a function, f E L (I) 

the next theorem holds [131. 

Theorem 9.6.1: 2 The distribution F corresponds to a function f E L (I) 

iff there is a finite constant K such that 

IF($) I 2 Kt 141 I2 (4 E: c;(I)) (9.29) 

It is clear from (9.27) that if T is a formal PDO in I and 

F, G E D(1) then 
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T(aF + BG) a(TF) + B(TG) 

(9.30) 

9.7. The Sobolev Spaces 

The Sobolev spaces are instrumental  f o r  t h e  study of solut ions t o  

PDE's. 

Hi lber t  spaces. 

Definit ion: 

i s  defined by 

Here, we w i l l  consider only those Sobolev spaces which are real  

More d e t a i l s  can be found i n  the  references [13-281. 

k L e t  k be a non-negative in teger .  The real Sobolev space H (I) 

(9.31) k H (I) = {F E D ( 1 ) ;  aJF E L 2 ( I ) ,  \ J I  5 - k )  

k The inner  product ( and norm I I * I  1, are  defined f o r  F,  G E H (I) by 

(9.32) 

k Definit ion: 

CZ(1) functions i n  the  norm I I I I 
subspace of H ( I )  e 

The real  Sobolev space H o ( I )  i s  defined by the closure of t he  

k of H k ( I ) .  I n  general, Ho( I )  i s  a proper 

k 
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Remark: 

(o r  C"( 3 ) )  funct ions with respec t  t o  t h e  norm I I 0 I I k.  

$(Q) can be obtained by t h e  funct ional  completion of t h e  C k ( f i )  

The addi t iona l  

elements needed t o  complete the  space a re  t h e  so ca l l ed  "generalized 

functions" or  " idea l  elements" which are the  l i m i t s  of Cauchy sequences 

i n  t h e  I I a I I k  norm. 

Theorem 9.7.1: 

( * s o ) ,  and norm I I * I I  

k 
H ( I )  is  a (complete) Hi lber t  space w i t h  inner  product 

k k 
and H o ( I )  i s  a closed subspace of H ( I ) .  k 

Theorem 9.7.2: 

H o ( I )  = H Z ( I )  = L 2 ( I )  

k - - -  ( 9 . 3 4 )  H o ( I )  j GHo(I) (= > 5 2 k 2 0 )  

The i d e n t i t y  mapping ( o r  imbedding) of H j ( I )  ( H i ( 1 ) )  i n t o  H k ( I )  (H:(I)), 

Then f o r  Q) > j 2 k 2 0, and F E H J ( Q )  ( F  E Ho(Q)); j 

f o r  = > j > k 2 0 i s  norm reducing and therefore  continuous. 

Theorem 9.7.3: L e t  T be a formal PDO of order k with C"(1) coef f ic ien ts .  

T regarded as a mapping - -  
T: F + T F, i s  a continuous l i n e a r  mapping of Hj(Q) i n t o  H J - k ( Q ) ) .  

Theorem 9.7.4: 

in teger  smaller than n/2. 

L e t  n be a pos i t ive  in teger  and l e t  [n/2] be the  l a r g e s t  

L e t  j and k be in tegers  w i t h  > k > j 2 0 .  - 
(i) The na tu ra l  i d e n t i t y  mapping of H k (Q) i n t o  H j ($2) i s  a compact 

compact sets i n  H j ( a ) .  

k l i n e a r  mapping, i .e. ,  it takes bounded s e t s  i n  H ( Q )  i n t o  

(ii) If there  e x i s t s  a non-negative in teger  m such t h a t  k - [n/2] - 1 2  - m, 

then each element i n  H ( a )  i s  (has  a representat ive which i s )  an 

element of Cm(8)  and t h e  na tu ra l  i d e n t i t y  mapping of H ( a )  i n t o  

C m ( n )  i s  a compact l i n e a r  mapping with 

k 

k 

(9.35) 
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where M is  a pos i t i ve  constant depending only on t h e  domain Q and the  

norms i n  (9.35) a r e  as defined i n  (9.6) and (9.3$.  

The following densi ty  r e s u l t s ,  already implied previously,  a r e  

usef'ul i n  appl icat ions.  

Theorem 7.7.5: 

dense i n  Hp(&2) wi th  respect  t o  t h e  I I * I I 
Theorem 9.7.6: 

cu la r  C:(Q) i s  dense i n  HE( a )  f o r  p = 0,1,2,. . . . 
In tegra t ion  by Pa r t s  Formula 

For any p = 0,1,2,..., t h e  subset C"(5) of HP(Q)  i s  

norm. 
P 

The subspace CI(Q) of D ( Q )  i s  dense i n  D(S2) e I n  p a r t i -  

The in tegra t ion  by p a r t s  formula (9.17) i s  v a l i d  i n  t h e  Sobolev 

Space [ X I :  

/ g(Tf)dY = 1 f(T*g)dy ( f  E: Hm(Q) ;  g E: $ ( a ) )  (9.36) 
a a 

In t eg ra l  Inequa l i t i e s  

The i n t e g r a l  inequal i ty  (9.19) i s  va l id  i n  the Sobolw Spaces [22,27] 

where X1 i s  as determined by 

9.8. E l l i p t i c  P a r t i a l  D i f f e ren t i a l  Operators 

(9.21). 

The PDO's s tudied here w i l l  be r e a l ,  e l l i p t i c  and of even order,  i .e.,  

we assume 

(9.38) 

where T i s  defined i n  I. 

and the aJ(y)  a r e  real. 

Di r ich le t  boundary conditions,  t h e  theory i s  f a i r l y  complete [13] . 

The order of T i s  2p f o r  some pos i t ive  in teger  p 

For these  operators ,  on functions sa t i s fy ing  

Definit ion: T is  sa id  t o  be e l l i p t i c  i n  I i f  f o r  each nonzero vector 

5 i n  R" 

(9.39) 
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where EJ i s  given by 

n 

i=l 

Jl J2 Jn 
. * *  5, ( 1 Ji = J) SJ = 5, 5, (9.40) 

Definit ion: 

c e x i s t s  such t h a t  

L e t  S2CI be as defined i n  9.1. If a pos i t ive  constant 

0 

(9.41) 

n f o r  every real nonzero 5 E E , then T i s  sa id  t o  be s t rongly e l l i p t i c  

i n  a. 

Theorem 9.8.1: If T i s  of order 2p and i s  

s t rongly e l l i p t i c  i n  Sl, there  e x i s t  two constants ,  k > 0, K < 0 such 

(Garding's Inequal i ty)  

t h a t  

( T  f ,  f l o  + K ( f ,  f l o  2 k l l f 1 I 2  : k ( f , f I p  (f E C I ( 5 2 ) )  (9.42) P 
2 

where (.,.), and ( * > * )  

HP(Q) respect ively.  

are t h e  inner  products f o r  Ho(Q) = L ( 5 2 )  and 
P 

Remark: 

s t rongly e l l i p t i c  then, from t h e  in tegra t ion  by p a r t s  formula, ( T  f ,  flo = 

( f ,  T * f ) O  f o r  f E C I ( 2 )  and therefore  T* i s  s t rongly e l l i p t i c  and satis- 

f ies t h e  same Garding inequal i ty  (9.41). 

It i s  assumed t h a t  t h e  aJ(y)  are su f f i c i en t ly  smooth. If T is  

It is  the  Garding inequal i ty  

which i s  instrumental  i n  the  establishment of s t a b i l i t y  conditions i n  

Section 10. 

The second order example of T given i n  ( 9 . 9 )  i s  s t rongly e l l i p t i c  i f  

A = A' = ( a i j ( y ) )  i s  a negative d e f i n i t e  matrix f o r  every y E ii. 

9.9. 2 Closed Operators i n  L (9) 

I n  order t o  obtain a closed operator densely defined i n  an appropriate 

2 Hi lbe r t  space, i n  t h i s  case, L ( a ) ,  t h e  following theorem taken from the  

contents of [13] (pp. 1730-44) is  va l id .  



- 40 - 

Theorem 9.9.1: L e t  a, I' and I be as i n  Section 9.1. 

formal, s t rongly e l l i p t i c  PDO of even order 2p i n  I. 

K 

L e t  T be a r e a l ,  

L e t  k > 0 and 
* 

Q) be as determined i n  9.41. L e t  T and T be the  operators i n  t h e  

A 

L e t  V and V 

graphs of T 

(i) V* = 

(ii) D ( v )  

(iii) D ( v )  

( i v )  ( V f ,  

( V I  (if, 

e. 

T f = T f ;  T f = .r*f 

denote t h e  operatars  whose graphs are t h e  closures  

and T, respect ively.  Then 

V ,  V* = V;  

A 

A A  

(V* i s  t h e H i l b e r t  Space Adjoint of V) 
A A 

= D(v) = P(v*) = O(v*); 

A 

( 9 . 4 3 )  

of t h e  

( v i )  t h e  spectrum of V ,  a(V),  i s  a countable, d i s c r e t e  s e t  of points  

i n  t h e  complex plane with no f i n i t e  l i m i t  points ;  

i f  ( T f , f )  1 - y ( f , f )  f o r  f E C i ( Q ) ,  then R e  h c y implies y E p ( V ) ;  

i f  T = T*, then V = V* = V = V*; 

( v i i )  

( v i i i )  
A A  

2 ( i x )  i f  A a(V),  R ( h ;  V )  E: [L ( a ) ]  i s  a compact operator;  

m+2p (5211 f o r  every m 2 0, ( X I  i f  A # ~ ( v ) ,  R ( A ; V )  E H ~ ( Q ) ,  H - 
( x i )  if V f E H m ( Q ) ,  f E Hm+2p(Q) HP(Q)  and f o r  m + 2p-[n/2]-1 2 3 2 0 ,  

0 

f E cj( ' i )  and ( a v ( r ) j k f ( y )  = 0 ,  y E r ,  o 5 - -  k 5 min ( j ,  pi). 

Remarks: Garding's Inequal i ty  is instrumental  i n  es tab l i sh ing  t h i s  r e s u l t  

and t h e  Di r i ch le t  boundary conditions are a subs t an t i a l  hypothesis needed 

t o  e s t ab l i sh  the  r e s u l t  i n  t h i s  way. The s t a t u s  of similar r e s u l t s  f o r  

other boundary conditions is  not  c l ea r  from t h e  l i t e r a t u r e  ava i lab le  t o  
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the authors,  although much mathematical l i t e r a t u r e  r e l a t i n g  t o  these 

problems is  ava i lab le .  The e s sen t i a l  conclusion of the theorem f o r  

t h i s  paper are ( i -v i i i )  . 
Through a convenient perversion of mathematical terminology, i f  

T is  a r e a l ,  formal, s t rongly e l l i p t i c  PDO of even order 2p i n  I, V 

obtained through theorem 9.9.1 W i l l  be ca l led  the  closed extension 

of T i n  the  remainder of t h i s  paper. 

process of def ining T i s  assumed t o  have been done. 

t i o n  i s  va l id  for  boundary value problems w i t h  Di r ich le t  boundary 

conditions,  but as remarked, is  not  va l id  i n  general for  other  boundary 
2 

conditions.  

C"( a )  C, V(V) and is  dense i n  L (Q) . 

This  means t h a t  t h e  intermediate 

Such a formula- 

V(V), since V* e x i s t s ,  i s  dense i n  L ( a )  and i n  f a c t  
2 

0 



- 42 - 

10. Applications t o  Partial  D i f f e ren t i a l  Equations 

The general  procedure i n  the  remainder of the paper is, f o r  

example, t o  consider a p a r t i a l  d i f f e r e n t i a l  equation of the  type 

u t ( y , t )  + ru (y , t )  = 0 sa t i s fy ing  Dir ichlet  boundary conditions,  

where T i s  a formal PDO as described. V becomes t h e  closed extension 

of T i n  L ( Q )  and u( * , t) = x ( t )  E L (Q) f o r  each t e Thus the  p a r t i a l  

d i f f e r e n t i a l  equation i s  formulated as an operator d i f f e r e n t i a l  equa- 

t i o n  ?(t) = -Vx(t) i n  L (Q) or replacing -V by A, t h i s  becomes ?=Ax 

as described i n  Section 6. 

semigroup as i n  Section 5 and i n  addition s a t i s f y  the s t a b i l i t y  theorems 

i n  Section 7, then the  s t a b i l i t y  of the so lu t ion  x=O of ? = Ax is  

assured. 

2 2 

2 

If A can be shown t o  generate a group o r  

I n  every case, t he  c ruc ia l  point i n  t h e  s t a b i l i t y  analysis  is 

whether or not A i s  s t r i c t l y  d iss ipa t ive  wi th  respect t a  some inner 

product, i .e. whether a r e l a t i o n  of the form   AX,^)^ 5 - - Y ( X , X ) ~  f o r  

x E D ( A )  can be obtained. 

HZ(Q) and are  i n  H2"(Q), then they are dense i n  H:(Q) f\ H2'(Q). From 

t h i s  f a c t  i t  can be shown t h a t  i f  (-rx,x)l 2 -y(x,x)l f o r  x E CE(s2) 

then (AX,X)~ 2 - Y ( X , X ) ~  f o r  x E D(/i). Note t h a t  the evaluation' of 

(-Tx,x)l f o r  x E C"(Q) proceeds formally, but the  e x p l i c i t  densi ty  

r e s u l t s  assure  t h a t  the  same evaluation holds f o r  (Ax,x), ,  f o r  

x E D(A) = Hg(s2)/\ H2p(Q). 

so lu t ions  then depends on the  semi-group o r  group generated by A, and 

the corresponding s t a b i l i t y  theory developed f o r  the semigroup OK 

group s t ruc ture .  

Since the  C"(Q)  functions are dense i n  
0 

0 

The rigorous mathematical s t r u c t u r e  f o r  
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spec i f ic  s t a b i l i t y  results are with respect t o  the n o m  o f ,  

Hilbert space, i n  t h i s  case,  L ( a ) .  2 This i s  not a pointwise 

s t a b i l i t y  result, but such a result may be possible by using the 

Sobolevimbedding theorems as pointed out i n  t he  last Section. 

To i l l u s t r a t e  the  use of Theorem 7 . 3  consider first the  c l a s s  

of parabolic p a r t i a l  d i f f e r e n t i a l  equations (evolution equations) 

u t ( y , t )  + r u ( y , t )  = 0 ( t  - 2 0 )  (10.1) 

where T i s  a strongly e l l i p t i c  PDO of even order 2p i n  I and suppose 

u ( y , t )  i s  subject  t o  t h e  Dir ich le t  boundary conditions of order p: 

y F r e  t 2 o (10.2) (a , ( r ) ) j  u(y,.t;) = 0, 0 5 7 -  j L p-1 - 
Equations (10,l) and (10.2) do not define an operator d i f f e r e n t i a l  

equation (6.1). 

each t 2 0 and using Theorem 9.9.1 allows t h e  following formulation: 

2 However, i den t i f i ca t ion  by u ( * , t >  = x ( t )  E L (Q) f o r  

- 
-V X = A X  x E P(V) = P(A) 

P(V) = D ( A )  = H:(Q)(lH2P(i2) g L 2 ( Q )  - (10.3) 

2 where V i s  the  closed extension of T i n  L ( a )  

Theorem 10.1: A su f f i c i en t  condition f o r  t he  n u l l  solut ion x=O of the  

system (10.3) t o  be the  only equilibrium so lu t ion  of 2 = Ax i n  (10.3), 

and t o  be exponentially asymptotically s t a b l e  with respect t o  the  L2- 

norm is  t h a t  there  exis t  a c 2 1 such t h a t :  

2 

- 
x E: P(v) (i) I Ix l lp  : ClIX1l2 

and 

(ii) ck - K > 0 (10.4) 

where k and K a re  t h e  two constants s a t i s fy ing  Garding's Inequal i ty  

f o r  T i n  (9.41) e 
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The proof of t h i s  theorem follows from Theorems 5.2, 7.3 and9..9.1. 

Since T i s  s t rongly e l l i p t i c  A = -V satisfies from ( i v )  of Theorem 9.9.1 

x E D ( A )  . 
Then by ( v i i )  of Theorem 9.9.1 f o r  ck-K > 0, R e i  > -(ck-K) implies 

X E p ( A ) ,  'then A and thus -V generates a semi-group and satisfies a l l  

of t h e  conditions of Theorem 7.3 with v ( x )  = (x ,x)  and hence assures 

the  asymptotic s t a b i l i t y  of x=O ( o r  u=O) . It i s  a l s o  t r u e  t h a t  A ,  s ince  

0 E p ( A ) ,  has a continuous inverse which assures  t h a t  x=O is  the  only 

equilibrium so lu t ion .  

Furthermore it can be shown that the imbedding of the closed sub- 

2 space HE(S2) i n  L (n) implies t ha t  there e x i s t s  a constant e 2 c 1 such 

tha t  (i) of Theorem 10.1 i s  satisfied. 

The object ive i n  the  s t a b i l i t y  ana lys i s  becomes thus t o  determine 

(i) the maximum value of c (o f t en  from w e l l  known i n t e g r a l  i nequa l i t i e s )  

and (ii) the maximum k and minimum IS such tha t  Gwding's Inequal i ty  

i n  ( i v )  of Theorem 9.9.1 i s  satisfied. 

Example 10.1. 1 As a first  example l e t  51 = (0,l) g R and l e t  - 

For T t o  be s t rongly e l l i p t i c  a must be pos i t i ve ,  thus a > 0. The 

Dir ich le t  boundary conditions are u ( 0 , t )  = u ( 1 , t )  = 0. 

Note t h a t  'I i s  formally self-adjoint .  The Lyapunov funct ional  v(u)  

can be taken as v ( u )  = (u ,u)  = 1' u2 d y and the  evaluation of (Vu,u> 

f o r  u E C"(S2) proceeds formally as follows: 

  VU,^) = / ( -a .  u 

0 

0 

2 1 2 1 
+ B u )dy = I( a u 2  + B u )dy = ~ ( U , U ) ~  + ( B  - a  ) ( u , u )  

Y 
0 (10.6) 

YY 0 

Using the w e l l  known inequal i ty ,  va l id  here, 
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there follows 
7 

or  i n  other  words c = lr2 + 1 and t h i s  is  a maximum. 

of Theorem 10.1 becomes now 

The condition (ii) 

2 (n2  + 1)a + ( B  - a >  = n a + > o 
2 

A su f f i c i en t  condition for  asymptotic s t a b i l i t y  i s  a > 0 and f3 > -lr a. 

From the  above example and the formal manipulations, it becomes 

apparent that  the  inequal i ty  (10,") can d i r e c t l y  be used t o  f ind  a 

su f f i c i en t  condition fo r  asymptotic s t a b i l i t y  by evaluating 

1 l 2  (vu,u> = I( 31 u2 + B u2,dy 2 - ( l r2ct  + B )  1 u dy = 
0 Y 0 

u s V(V) (10.8) 2 = ( l r  a + B )  (u,u) 

The condition that i s  imposed on the  coef f ic ien ts  of Garding's 

Inequal i ty  f o r  T i s  thereby implemented. 

The second example w a s  s tudied by Eckhaus [ 6 ]  using approximate 

This pa r t i cu la r  example w i l l  show the important use of methods. 

equivalent inner products i n  choosing a Iiyapunov f'unctional, i .e.  i n  

evaluating   VU,^). 

1 Example 10.2: Take again Sl = (0,l) - R and l e t  

where R i s  a pos i t ive  constant.  The Dir ich le t  boundary conditions are 

u ( 0 , t )  = u ( l , t )  = 0. 

T i s  f o r  R 0 a strongly e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  operator; 

however, T is  not formally self-adjoint .  If a Lyapunov functional 

v (u )  = (u,u) i s  chosen, the evaluation of   VU,^) results i n :  
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(10.10 1 

where the inequality (10.7) has been used. 

the asymptotic stability of the null solution u=O is thus 

A sufficient condition for 

However ‘I is equivalent to T * e’ 

where 
1pii7 y2 

and p(y) = e 
Y2 

w(y) = R e 

(10.11) 

(10.12) 

(10.13) 

And T~ is strongly elliptic, aed both T~ and V are self-adjoint with 

respect to the equivalent inner product 

The sufficient condition for asymptotic stability of the null solution, 

u=O, follows from evaluating 

Application of the integral inequality (10.7) to e (1’2)my2 u, rather than 

to u gives 

Thus a sufficient condition for asymptotic 

solution u=O becomes now 
4 O < R < r  

(10.16) 

stability of the null 

(10.17) 

which is a considerable improvement over (10.11) 
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au u( t ,O) = u ( t , l )  = - 
aY 

The above example shows the  importance of se lec t ing  the  “optimum” 

Lyapunov funct ional ,  i , e .  t h e  inner  product f o r  t he  space. The general  

procedure i s  t o  introduce T i n  such a way t h a t  t he  highest  order odd 

der iva t ive  of T i s  eliminated. This i s  once more i l l u g t r a t e d  i n  t h e  

following example. Agqin taken from Eckhaus [ 6 ] .  

e 

au 
aY 

= -  = o .  

Example 10.3: For Si = (0,l) - R1 and R > 0 l e t  

and with Dir ich le t  boundary conditions 

For T t o  be a s t rongly e l l i p t i c  formal PDO of order 2p, p=2, R > 0. 

Evaluation of (Vu,u) on t h e  Co(n) functions r e s u l t s  i n  a s u f f i c i e n t  

condition f o r  asymptotic s t a b i l i t y  of t h e  n u l l  so lu t ion  u=O of 

OD 

However, T i s  equivalent t o  T e 

(10.18) 

(10.20) 

with p (y )  = ez 
gives the  su f f i c i en t  condition f o r  asymptotic s t a b i l i t y  of t he  n u l l  solu- 

. The subsequent evaluation of  VU,^)^ = (Vu,w(y)u) 

t i o n  as 
16 T2 

O C R C -  
15 

Next consider t h e  c l a s s  of wave equations: 

(10.21) 
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with a being a pos i t i ve  constant and T now a s t rongly e l l i p t i c  self- 

ad jo in t  p a r t i a l  d i f f e r e n t i a l  operator of even order 2p i n  I. 

l e t  u ( y , t )  s a t i s f y  the  Dir ich le t  boundary condition of order p (10.2). 

Again 

By employing Theorem 9.9.1, (10.22) can be reformulated i n  terms 

of a closed self-adjoint  operator,  V ,  where t h e  following holds: 

(10.23) 

V extends T (10.24) 

O(V) = H ~ ( Q ) ~ \ H ~ P ( Q )  0 g ~ ~ ( 0 )  (10 025 1 

Equation (10.23) can be wr i t ten  i n  the  form (6.1) by transforming t o  

where 

(10.27) 

Since 
r- 1 

2 X 
A x =  I 
e- 

~ t-~. ,  - a x  2 _1 

there  a l so  follows R(&) = H;(Q)xR(V) = H Z ( Q )  x L2(Q) .  

The following theorem can now be proven: 

Theorem 10.2: 

s t a b i l i t y  of t h e  n u l l  so lu t ion  of t he  system given by (10.26) and (10.27) 

where V i s  the  closed extension of the  strongly e l l i p t i c  formally self- 

adjo in t  PDO ?, i s  t h a t  there  exis t  a c 1. 1 such t h a t  

A necessary and su f f i c i en t  condition f o r  t he  asymptotic 

- 
(xl=x E P ( v ) )  

(10.28) K (ii) k - - > E >  0 c =  
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where k and K are t h e  constants s a t i s fy ing  Garding's Inequal i ty  for? T. 

The proof of t h i s  theorem i s  based on the  Theorems 5.3, 7.4 and 

9.9.1 by construct ing t h e  b i l i n e a r  funct ional  

where 

A 

An evaluation of (5, - -  P x) together with the  condition ( i) ,  (ii) 

and (iii) of Theorem 10.2 gives 

where d=d(c) i s  some pos i t ive  constant.  

Since the  coe f f i c i en t s  of T and thus V are uniformaly bounded on 0 

there  e x i s t s  a constant D, 0 < D < 00 such t h a t  

2 (10.32) 
p,o 

The b i l i n e a r  form (s&c) being defined on a dense subset of  HE(Q)xL 2 ( Q )  and 
_. 

being bounded can be extended by cont inui ty  [lo] t o  t h e  form (E,%) which a l s o  

satisfies (10.31) an@ (10.32) and P E [HE(Q) x L 2 ( a ) ]  i s  RSPD, or  i n  other  

words (&,PJ-) is an equivalent inner  product i n  the  Hilber t  space H E ( Q )  x L2(0 )  e 

- 
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f o r  some e > 0. It can a l s o  be shown t h a t  t he re  e x i s t s  a constant E ,  

0 C E C such t h a t  

(&5 Ex) 2 -El 1x1 I p  (10 34 

Thus A generates a group if A satisfies the conditions (5.8) which - _I 

can be shown [30,311. Furthermore let 

v(x) = ( 5 9  g 5) 

Then it follows after combining (10.31)3 (10.32), (10.33) and (10.34) 

t h a t  there  e x i s t  ana and 8 ,  00 > a  2 B > 0 such t h a t  - 

2e . by l e t t i n g 3  = - and B = Thus the  conditions of Theorem 7.4 a re  2E 
D 

a l s o  s a t i s f i e d  and t h e  n u l l  solut ion z =  0 - (and thus u=O) of (10.26) is  

asymptotically s t ab le .  

Thus f o r  a > 0 the  s t a b i l i t y  analysis  of (10.22) requi res  only an  

evaluation of ( V X , ~ ) ,  where V i s  the  extension of T. 

however proceed as follows 

This  evaluation must 

I n  order t o  e s t ab l i sh  bounds on the  system parameters one can take E 

s u f f i c i e n t l y  small and thus requi re  ck - K > 0. 

t h e  matrix E!, (10.30), is  motivated i n  [7] .  

The pa r t i cu la r  choice of 

Example 10,4. 

s t a b i l i t y  follow immediately from the  evaluation i n  Example 10.1 as 

a > 0, a > 0 and B > -r a. 

Let T be defined as i n  Example 10.1. The conditions f o r  

2 However, t he  Ly~punov funct ional  v (u )  must - 
be chosen as 

'1 

1 2 and the  s t a b i l i t y  i s  with respect  t o  the norm f o r  t he  space Ho( Q) x L (Q) 
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Example 10.5 L e t  T be defined as i n  Example 10.2,  then s ince Theorem 

10.2 requires  T t o  be self-adjoint  t he  evaluation of t he  Lyapunov func- 

t i o n a l  and i t s  der iva t ive  must be done with respect  t o  the  inner  product 

as defined by (10.14)* 

(Vu, u ) ~  > 0 as, a > 0 and 0 < R < A * 

The conditions f o r  s t a b i l i t y  follow from 

4 

I n  Theorem 10.2 and Examples 10.4 and 10.5 only self-adjoint  

s t rongly e l l i p t i c  PDO's have been considered. 

s t a b i l i t y  ana lys i s  can be based on an evaluation of (Vu, u )  only, where 

V i s  t h e  closed extension of T .  

I n  a l l  these cases t h e  

However, one i s  ce r t a in ly  not formally l imi ted  t o  self-adjoint  

Consider again equation (10.22) and l e t  T j u s t  be a s t rongly PDO's. 

e l l i p t i c  PDO of even order 2p i n  I. 

conditions (10.2) be s a t i s f i e d .  

And l e t  t h e  Dir ich le t  boundary 

Then the  na tu ra l  coice of Qapunov 

funct ional  i s :  

2 
v ( u )  = [ < ( T  + T*)U + a Iu 

a 

where < designates t h e  conjugate of 

- - + a u u + a u u + 21utI21dy (10.38) t t 

u. The der iva t ive  ;(u) becomes now: 

I n  order t o  formally derive s u f f i c i e n t  conditions f o r  asymptotic 

s t a b i l i t y ,  v ( u )  and + (u )  must be considered i n  t h e i r  t o t a l i t y  as given by 

(10.38) and (10.39). The t e r m  

Garding's Inequal i ty ,  s ince both T and T* s a t i s f y  (9.42) f o r  i d e n t i c a l  

/ < ( T  + r*)u dy can again be evaluated with 
n 

coef f ic ien ts  k and K. The second and t h i r d  t e r m  i n  (10.39) necess i ta te  a 

fur ther  evaluation as w i l l  be shown i n  the  following example. 

Example 10.6 Consider t he  panel f l u t t e r  problem as f o r  example s tudied by 

Parks [5].  Fromthe nondimensional equation f o r  the  panel motion of [5] t h e  

following p a r t i a l  d i f f e r e n t i a l  equation can be derived: 
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with fi = ( 0 , l )  ,C - 2.  
panel-air mass ratio, and M, the Mach number, are essentially positive; f, 

t h e  tension parameter, maybe pos i t i ve  or  negative.  The boundary condi- 

t i o n s  are u ( 0 , t )  = u ( 1 , t )  = 0 and u ( 0 , t )  = u (1,t) = 0. 

the  Hilbert space would be H$( Q) x L2( fi) . 

Herep d, the flexural stiffness parameter, 1. 1 ~  the 

I n  t h i s  case 
Y Y 

For d > 0 and 1.1 > 0, 

(10.41) 

i s  a s t rongly e l l i p t i c  PDO. Similarly f o r  t h e  formal ad jo in t  of T, T*$ 

given by 

(10.42) 

The evaluation of the  Lyapunov funct ional  (10.38) f o r  t h i s  case 

1 
1.I 

with a = - > 0 requi res  the  evaluation of 

which should proceed as in (10.36). 

I Z(T+T*)U dy = 1 
a 

T u dy = ~(Tu,u) 

Carrying out the integration by parts, 

applying the integral inequality (10.7) and letting E + 0 gives 

as the  conditions f o r  v ( u )  > 0. 

Similar ly  f o r  t h e  der iva t ive  ;(u) as given by (10.39) can be 

wr i t ten :  

(10.44) 2 
+ ( U t $  u t )  + - 1) ( u , u ) l  

If I? < u ( f  + ?I**d), then from (10.44) it follows t h a t  
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where k = k(E) > 0 f o r  E > 0 s u f f i c i e n t l y  small. 

f o r  $(u) t o  be negative d e f i n i t e  follow as: 

Thus the conditions 

f + r  2 d > O  and I ? < p ( f + * d ) .  2 (10.46) 

It can be shown tha t  formally, a l l  the  conditions of Theorems 5.3 and 

7.4 are satisfied, so tha t  t h e  conditions f o r  t h e  asymptotic s tab i l i ty  

of the  n u l l  so lu t ion  of (10.40) are: 

2 2 p > 0 ,  d > 0, f + TI d > 0 and 2 < v ( f  + r d )  (10.47) 

These r e s u l t s ,  formally derived, are compatible w i t h  those dbtained 

by Parks [ 5 ] ,  
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11. Additional Results and Suggestions f o r  Further Research 

The theory presented i n  t h i s  paper has been extended i n  severa l  

direct ions.  A l og ica l  direct ion,  of course, is  t o  extend t h i s  t o  

p a r t i a l  d i f f e r e n t i a l  equations which are nonlinear. 

done making use of r e s u l t s  o r ig ina l ly  obtained by Kato [ 3 3 , 3 4 , 3 5 , 3 6 1 .  

Essent ia l ly ,  instead of having asemi-soup o r  group of l i n e a r  opera- 

t o r s ,  one assumes the  existence of a semi--group of nonlinear operators 

ITt ;  t > O )  where T f o r  each t 1 0 is nonlinear and defined on a 

Hilber t  space, H. As a r e s u l t  of t h i s  assumption, the  inf in i tes imal  

generator A, i s  defined on a subset  of the Hi lber t  space H and is a 

nonlinear operator. I f  the nonlinear semi-group is  contract ive then 

(-A) is an m-monotone operator. I f  (-A) is an m-monotone operator 

and l inear,  then A is  a d i s s ipa t ive  operator,  which connects t h i s  

theory t o  the  theory encompassed under t h a t  of l i n e a r  semi-groups 

defined on a Hi lber t  space He 

groups and nonlinear in f in i tes imal  generators has been developed 

only recent ly ,  some of the f i n e  s t r u c t u r e  of t h i s  theory has not 

ye t  been established. 

t o r  A need not be dense i n  the  Hi lber t  space H, 

i f  A is a l i n e a r  operator,  then the  domain is dense i f  i t  generates 

a l i n e a r  semi-group. In  addition, solut ions t o  the operator equa- 

t i on  3 - Ax no longer have a l l  the  n ice  propert ies  t h a t  e x i s t  i n  

the case of linearsemi-groups. Howevers even with a l l  these l i m i t a -  

t ions ,  the  classical Lyapunov s t a b i l i t y  theorem on d i f f e r e n t i a l  equa- 

t ions with an asymptotically s t a b l e  l i n e a r  approximation and a 

nonlinear p a r t  carries f o  

t i on  case; t h a t  is, i f  the  l i n e a r  app oximation is asymptotically 

s t ab le ,  then under the  proper assumptions regarding the  nonlinea 

This has been 

im t 

Since the theory of nonlinear semi- 

For example, the  domain of a nonlinear ogera- 

It turns  out t ha t  

ard i n t o  the p a r t i a l  d i f f e r e n t i a l  equa- 
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term, the  nonlinear equation is asymptotically s t a b l e  a l so  i n  some 

neighborhood of t he  or igin.  

i n  the  nonlinear cases. 

There exis ts  a g rea t  dea l  t o  be done 

Another d i r ec t ion  i n  which extensions have been made t o  the 

present theory i s  i n  the  choice of Lyapunov funct ionals .  Essent ia l ly ,  

i n  t h i s  paper, Lyapunov funct ionals  have been r e s t r i c t e d  t o  the  class 

of equivalent inner  products f o r  a Hi lber t  space. 

there  is  a na tu ra l  extension t o  the  concept of inner  product, which 

is ca l l ed  a semi-inner product [10,31,32,37,38], This na tu ra l  

extension leads  t o  a much broader class of possible  Lyapunov func- 

tLandLs,which i n  turn  lead t o  s ign i f i can t  developments. 

these i s  t h a t  the  Lyapunov s t a b i l i t y  theory can be extended t o  Banach 

spaces, t h a t  i s , . spaces  which do not  necessar i ly  have an inner  pro- 

duct s t ruc ture .  The second of these is t h a t  a theorem similar t o  

Theorem 7.4 can be proved f o r  semi-groups using the  semi-inner product 

formulation i n  e i t h e r  Hi lber t  space o r  Banach space [31,32]. 

It turns  out  t h a t  

The f i r s t  of 

An addi t iona l  l imi t a t ion  i n  the present paper which should provide 

an opportunity f o r  fu r the r  research i s  t h a t  t he  formal PDO, T and the  

associated boundary value problem cons is t s  of the  Dir ich le t  problem. 

I f  one attempts an extension of theorem 9.9.1, which is the bas ic  

theorem t o  connect p a r t i a l  d i f f e r e n t i a l  equations with operator d i f f e r -  

e n t i a l  equations, one is faced with an extremely d i f f i c u l t  problem even 

i n  the  l i n e a r  case. Essent ia l ly ,  what is required is addi taanel  mathemat- 

ical  analysis.  It should be  emphasized, however, t h a t  the  main d i f f i c u l t y  

does not  l i e  with t h e  general  approach t o  the  problem as de ta i l ed  i n  t h i s  

paper, but a s p e c i f i c  r e s u l t  t h a t  is  required,  which i n  t h i s  paper, f o r  

t he  Di r i ch le t  problem, is  emcompassed i n  theorem 9,g.l. Once a more 

8 
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general  r e s u l t  of t h i s  type is ava i lab le ,  t h e  general  theory f o r  

p a r t i a l  d i f f e r e n t i a l  equations with non-Dirichlet boundary conditions 

should proceed i n  much t h e  same way as indicated i n  t h i s  paper. 

Another d i r ec t ion  f o r  fu r the r  research, is t o  determine the  

s t a b i l i t y  with respect  t o  d i f f e r e n t  normsr 

2 s t a b i l i t y  r e s u l t  is  with respect  to  the  L -norm. There are many 

physical problems where s t a b i l i t y  with respect  t o  norms o the r  than 

the L -norm is important. Once again however the  d i f f i c u l t y  i s  i n  

the  d e t a i l s  of the proof f o r  a theorem such as theorem 9.9.1. What 

one would t r y  t o  do, as a conjecture,  would be  to  c lose  the  operator T,  

not  i n  L2 but  i n  a Sobolev space such as Hm(Q) which becomes the  base 

Hi lber t  space and s t a b i l i t y  is  with respect  t o  I I e 11 ,  of Hm(S2). I f  

m is s u f f i c i e n t l y  la rge ,  t he  Sovolev embedding theorem from (x i )  of 

Theorem 9.9.1 can be applied which states i n  essence t h a t  elements 

of Hm(Q) are i n  d(S2) i f  m >> j .  

I n  t h i s  paper t he  main 

2 

I f  I is the  dmbedding operator 

from Hm(Q) t o  C j (Q), then from the  norm re la t ionship  

i t  follows, Z 0 E C 1 (Q) is  asymptotically s t a b l e  with respect  t o  the Cj( i2)-  

norm i f  0 E Hm(i2) is asymptotically s t a b l e  with respect  t o  the  Hm(s2) norm, 

This is  not s t r i c t l y  pointwise s t a b i l i t y ,  bu t  i f  one is wi l l ing  t o  ignore, 

a t  each t 2 0, the  d i s t i n c t i o n  between equivalence classes of functions 

which are the  elements of Hm(Q) and a C J (Q) function which is a representa- 

tive of such an equivalence class, one has "almost everywhere pointwise 

s tab i l i ty" .  

An addi t iona l  p o s s i b i l i t y  is the proof of L a S a l l e f  s Theorem [ 391 

i n  these  Sobolev spaces, 

compactness of a set which i n  H 

An essen t i a l  requirement i n  LaSalle's Theorem is 

Rn is assured i f  t h e  set is closed and 
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bounded 

V 

in Hm-’ (Q) for j=1,2, 0 * ,m, Vq 

this, LaSalle‘s Theorem can be proved. 

In a Sobolev space, Hm( B) a closed bounded set, say 

= {x E Hm(Q); 11x1 1, 2 q), is not compact, but if V 
(4 9 

is imbedded 

Hm-’(B) is compact and perhaps from 

Of course, this mathematical formulation for solutions to par- 

tial differential equations can be pursued in directions other than 

stability theory, for example optimal control, numerical approximation, 
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12, summary 

The purpose of this paper has been to present a rigorous 

approach to the stability of partial differential equations. The 

required mathematical machinery has been explored and applications 

to a class of partial differential equations have been given. 

of the formal manipulation of Lyapunov functionals for these types 

of partial differential equations has been rigorously justified. 

mathematical treatment to attain this is sophisticated but well within 

reach of doctoral level engineers. This is a beginning--much is left 

to be done, 

Much 

The 
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