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1. INTRODUCTION

The intent of this paper is to provide a mathematical and theorétical
framework in which the stability of solutions to certain types of partial
differential equations can be rigorously investigated. A need for doing
this can be established by examining the rather substantial number of papers
written on stability of partial differential equations [1-7] in which the
mathematical manipulations are, at least in part, formal in nature rather
than rigorously substantiated. Roughly speaking these manipulations involve
integration by parts, application of certain integral inequalities, the
assumption of certain "smoothness' properties of solutions to partial differ-
ential equations, and the assumption that solutions to the partial differen-
tial equations essentially satisfy the requirements of a dynamical system.
Generally speaking, in the literature presently available, most of these
details have not been rigorously substantiated.

It will be shown that for certain classes of partial differential equa-
tions satisfying certain types of boundary conditions, the integration by
parts formula, the application of classical integral inequalities and the
assumptions of sufficiently smooth solutioms can be rigorously substantiated.
However, the final assymption that the solutions can be regarded as character-
izing a dynamical system, is not true in general even for linear partial
differential equations. For certain partial differential equations this
assumption is shown to be true. This class of partial differential equations
generates solutions which happen to satisfy the group property which is
equivalent to the dynamical system property. A much broader class of partial
differential equations generate solutions which satisfy only the semi~group
property. This is not the same as a dynamical system in the generally accepted

terminology.
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A viable Lyapunov stability theory can be rigorously developed for
the class of partial differential equations which generate either gréups
or semi-groups. The theory for groups is "nicer” and more complete than
the theory for semi-groups in that necessary and sufficient conditions
can be given for asymptotic stability.

A large part of this paper is expository in nature. Most of Sections
2 through 6 and 9 are well known to mathematicians working in this parti-~-
cular area of functional analysis. The intent of these sections is to
provide a concise treatment of the mathematical resources which are
necessary to develop a Lyapunov stability theory for partial differen-
tial equations. There are certain key points in these sections which
are instrumental in obtaining a suitable Lyapunov stability theory. Some
of these, such as the concept of equivalent inner product, are not treated
in detail in the standard references available to authors. The contents
of Sections 7, 8 and 10 are thought to be relatively new and certainly
important to the treatment of stability of partial differential equations.

For full understanding of this paper some background in functional
analysis is essential. The best elementary reference is the book by
Kolmogorov and Fomin [8] and at a somewhat more advanced level the book
by Taylor [9]. In the opinion of the authors, the finest general reference
for this work is the book by Yosida [10]. The standard reference for the
general theory of semi-groups is the book by Hille and Phillips [11] and
also, Part 1 of the work by Dunford and Schwartz [12].

For the abstract theory of partial differential operators, probably
the best reference is Part 2 of the work by Dunford and Schwartz [13].

As general references on both the formal and abstract properties of partial
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differential operators valuable information can be found in the books

by Smirnov [14] Kantorovich and Akilov [15], Petrovskii, [16], Smirnov [17],
Goldberg, [18] and, of course, the pioneering work by Sobolev, well repre-
sented in the two monographs [19, 20], and the book [21]. In addition to
these texts there are undoubtedly many others which the interested reader
will be able to find on his own.

There is a great volume of relevant literature appearing in engineer-
ing journals, physics journals, mathematical journals and as seminar notes,
lecture notes and monographs [22-28]. 1In sheer weight of numbers, variety
of treatment, the extent of mathematical background required, and in some
instances, the degree of specialization required offers to the researcher
interested in this field a vast array of technical literature, not all of
which can be referenced. For this reason, only a few of the most relevant
technical works are referenced in this paper.

It is assumed that the reader is already familiar with some of the
basic theory of functional analysis. Only a brief outline of some of
the necessary topics are presented in Sections 2 through 5. Statements
are made and theorems are stated without elaborating on the proofs of
these fundamental concepts which may be found in many of the references.
The theory here is developed in the context of real Banach and Hilbert
spaces, but there is no difficulty in extending all of these results to
complex Banach or Hilbert spaces. Section 2 is a brief summary of Banach
and Hilbert spaces. The concept of equivalent inner product is introduced
in Definition 2.2, Section 3 gives a brief summary of theory of linear
operators. For applications to partial differential equations, the key
concept is that of a closed, not necessarily bounded, linear operator.

In addition a complete characterization of equivalent inner products is
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given in theorem 3.2. Section 4 is a very brief resume of the spectral
theory needed in the remainder of this paper. Section 5 is a more |
extended treatment of the theory of semi-groups and groups. The key
results in this section are the relations between dissipative operators
and contractive or negative contractive semi-groups. Two elementary
examples are given at the end of this section. Section 6 is a concise
statement of what is meant by solutions to operator differential equations
and the stability of these solutions. Most of the content of Section 7
is thought to be relatively new. The main result in this section is the
choice of the form for a Lyapunov functional for studying the stability
of operator differential equations. This is related to the concept of
equivalent inner product and dissipative operators, and leads to the
usual Lyapunov stability theory. The key results are theorems 7.3 and
7.4. It turns out that this theory developed €for Hilbert spaces is a
direct generalization of the usual Lyapunov stability theory for linear
differential equations in finite dimensional spaces. This is shown in
Section 8.

Section 9 is crucial in developing a Lyapunov stability theory for
partial differential equations. It is in this section that the transition
from what may be called formal partial differential equations to abstract
operator differential equations is made. Mathematically, most of the
content of this section is not new, in fact being taken in great part
from Dunford and Schwartz [13]. The idea is to take certain types of
formal partial differential operators and to extend these to closed
operators in suitable Hilbert spaces. This can not be done in general.
However, for a restricted class of partial differential operator this can

be done. It is with this class of partial differential operators that
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the development here is concerned. The key results are the validity
of the integral inequality formula, and Garding's inequality, whichv
is actually fundamental in obtaining the last theorem.

In Section 10 several examples illustrate the application of the
theory. Most of these are selected from the available literature in
order to exemplify the relationship of this rigorous mathematical treat-
ment to the more formal properties described earlier. Section 11 des-
cribes areas for future research along the lines described in this paper.

The content of this paper is an expansion of a previous paper [29]
and is taken in part from a doctoral dissertation by G. R. Buis [30] and
some other reports and papers by the authors [31, 32]. Extensions to
both the linear and nonlinear theory can be found in [32-38] as described

briefly in Section 11.



2. Banach and Hilbert Spaces

It is assumed that the reader is already familiar with the theory
of Banach and Hilbert spaces. Only a brief outline of some of the
necessary topics will be presented here. Proofs and further details
may be found in the elementary book [8] and the more advanced texts[9-13].
Most of the theory will be developed in the context of real Banach and
Hilbert spaces, but on occasion, complex numbers will be used; if a is

complex, o is the complex conjugate of a.

A normed linear space X, is denoted by X = (E, ||:||) where E is a

linear vector space over a field of scalars, K (the real or complex
numbers), and ||-|| is the norm in X satisfying for all aeK and all

x; yeE: (a) |lx|] 205 (©) [loax||=[a] [|x]]5 (e) [lx#y|] 2 [Ix||+]I¥]]s
and {a) ||x|] = 0 iff x = 0. A Cauchy sequence, {x } S X is a sequence
such that given any € > 0, there exists an integer N = N(e) > 0 such

that myn > N imply that lem—xnll < g, If each Cauchy sequence in X
converges to an element xeX, the space is said to be a complete normed

linear space and is called a Banach space (or B-space). The convergence

is designated by ||x -x|| >0 as n + = or x, > xor lim x;=x. X is a
real B-space if X is the field of the real numbers.

A Hilvert space (or H-space), H, is a special B-space, the norm of
which satisfies the parallelogram law, |]x+yl|2 + ||x—y||2 = 2(||x|]2+l|y|l2)
for all x, yeX. This may be used to define an inner product (.s:) by (x,y)=
(1/4) (||x+y||2..||x_y||2) and then H is denoted by H = (E, (+>-)). Alterna-
tively, if H is an inner product space, the inner product, (-+».), in H may
be used to define a norm by ||x|| = (x,x)1/2, An inner (or scalar) product

has the following properties for all weK and all x,y,zeE: (a) (@x,y)=a(x,y);



(b) (x,v) = (v,x); (c) (x+y, z) = (x,2) + (v,z); and (d) (x,x)>0
whenever x#0. Thus, an H-space is an inner product space which is
also a B-space with norm ||x|] = (x,x)l/z. H is a real H-space if
K is the field of the real numbers. By properties (a),(b),(c), the
inner produét is bilinear for a real H-space (ggesqui-linear for a
complex H-space).

A point xeX is said to be a limit point of a set A C X iff there
exists a seaquence of distinct elements {xn} C A such that lim X =X,
The closure of a set A, denoted by K, is the set comprised of A and
all the limit points of A. A set A isclosed iff A = A, A set Ais

said to be dense in X if A= X. If A is closed and dense in X, A=X,

Definition 2.1: TIf X; = (B, ||-}],) and X, = (&, I]-1],), then the

two norms ||+]|, and I|‘l[2 are said to he equivalent iff there exist

1
real constants, » >a > 8 >0 such that 8|lx'12 = |lx!|1 ;<a||xl!2
for all xeE,

It is clear that all the impnortant vnroperties (such as convergence,

denseness, etc,) holding for one norm will also hold for an equivalent

norm. In such a case X] and X, are said to be topolosically equivalent.,
Sometimes in the following no distinction will be made between X; and
XZ if the norms are equivalent, Based on the concept of equivalent
norms, it is possible to consider the concept of equivalent inner
nroducts.
Definition 2.2: 1If Hy = (E, ('ss)l) and H, = (E, (+++)y), then the
two inner products are said to be 9921332525 iff their corresponding
norms are equivalent.

The equivalence of norms does not i mply the equivalence of inner

products, since a B-space need not be a Hilbert space. However, if



each norm satisfies the parallelogram law, then the inner products are
equivalent if the norms are equivalent. In the sequel, an important
role is played by equivalent inner products.

Example 2.1: Let R" be the set of all real n-tuples, xeRP x =

col {x3, v+-, xn}, X is real and ]xil < w for i=l, *°+*, n. The

. . n .
inner product in R is

n
(x,y) = X XY = y (x' = transpose of x)
i=1

and the norm is

n
Hxll = 02 = (] D2
i=1

R is a Hilbert space. Any equivalent inner product is
n
(X, y)l = (Px’y) =’ Z_ xiyjpij = xl Py
i, j=1

where P is a real, symmetric positive definite matrix. If Xl(kn) is

the minimum (maximum) eigenvalue of P, then Hx||l = (2 Px)}/? implies

VI g sl Il T

Example 2.2: Let C[0,1] be the set of continuous functions defined on
[0,1] with norm

[l£]] = sup |£(t)]
tef0,1]

C[0,1] is a B-space but not a Hilbert space since |

'II does not satisfy

the parallelogrem law,

2(0,217) be the (classes of) real functions defined on

Example 2.3: Let L

2m
(0, 2m) such that if feLE(O,Qw) the Lebesgue integral [ ]f(t)lzdt < =,
o
The inner product of f, g € L2(O9 2%) is

(£.8) = /27 £(t) g(t) dt
o]



and the norm is

2T
el = ( f £2(e)at)/?
(o]

i (0,2n) is a Hilbert space. Any elements f,gsL2(0,2w) have unique

Fourier OSeries representations:

o
f(y) = Z (a_ sin ny + b_ cos ny)
=0 n n
0
gly) = ] (c_ sinny + 4_cos ny)
n n
n=0
£ e 1°(0, 2n) iff §  (a 241 %) <= and
n n
n=0
T 2 2,,1/2
Hell = € I (a2 +n 20
n n
n=0
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3. Linear Operators

Let X and Y be vector spaces over the same field of scalars, K.
Let T be an overator (or function) which maps part of X into Y. The
domain of T, D(T), is the set of all xeX such that there exists a
veY for which Tx = y. The range of T, R(T) = {Tx: xeV(T)}. The
null space, (or kernel) of T is N(T) = {x: Tx = 0}, If D(T;) E:U(Tz)
and Tlx = Tox for all xeD(Tl), then T2 is called an extension of T1
or T; is called a restriction of T, and this is denoted as T1€§ T2'
If D(T1)= V(T,) and Tyx = T,x for all xeV(T;), then T, = T

1 2°

operator T is called 1:1 if distinct elements in D(T) are mapped into

The

distinct elements of R(T). An operator T with V(T) a linear subspace of
X and R(T) in Y is called linear iff for all x,ze0(T) and all a,BeK,
T(ax+Bz)=aTx+8Tz., A linear operator T is 1:1 iff N(T) = {0},

If X and Y are normed linear spaces and T is a linear operator
with D(T) € X and R(T) € Y, the following statements are equivalent:
(a) T is continuous at a point xer(T); (b) T is uniformly continuous

on D(T); (c) T is bounded; i.e., there exists a number M such that

for all xeD(T), ||Tx|| < M|lx]|. If T is bounded, the norm of T,
|{T|| is defined by ]|T|I= sup (||Tx]] ¢ |lx]|| < 1, xeD(T)). With
this norm, [X,Y], the space of all bounded linear operators with

domain X and range in Y is a normed linear space., If X is a normed

linear space (not necessarily complete) and Y is a B-space [X,Y] is

(1]

a B-space. For X = Y, [X] will be used to denote [X,X].

If X and Y are normed linear spaces, the cartesian product normed

linear space X x Y is defined as the normed linear space of all ordered

pairs f,y} with xeX and yeY with {Xi’yl} + {xg,ye} = {xl+x2, yl+y2} and
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a{x,y} = {ax,ay} with norm given by ||{x,y}|]| = (||x]|| + ||y||2)1/2.

If X and Y are B~spaces, so is X x Y. If T is a linear operator with
D(T) € X and R(T) < Y, the graph, G(T), of T is the set ({x,Tx}:xeD(T)).
Since T is linear G(T) is a subspace of X x Y.

Definition 3.1t If the graph of T is closed in X x Y, then T is said

to be closed in X. When no ambiguity is possible, T is said to be
closed.
Example 3.1: (See also examples 4.1, 4.3). Let X =Y = C[0,1] and
let C'[0,1] be the subspace of X consisting of functions with continuous
first derivatives. Define the linear differential operator T mapping
C'[0,1] into Y by (Tx)(t) = x"(t), t ¢[0,1]. Then T is closed. However
T is not continuous, since the sequence xn(t) = t" has the properties
|lt=, ]| = 1 [10].
Theorem 3.1: T is closed iff x eD(T), X 7%, Tx >y imply xeD(T) and
Tx = y.

A bounded operator, T, need not be closed but if Y is a B-space,
T has a unique extension, E, to D(T) = D(T) such that ||§||-||T||
and T is closed. If D(T) is dense in a B-space, X, then Ee[X,Y].
Some unbounded operators have closed extensions. A linear operator
T is called closable if there exists a linear extension of T which
is closed in X. T is closable iff for xneD(T), lim X = 0 and
lim Tx, = y imply that y=0.

Definition 3.2: If T is a closable operator, then its closed extension

T is defined as the operator whose graph G(E) is the closure of the
graph of T.
Let X and Y be normed linear spaces and T be a 1:1 operator with

D(T)SE X and R(T)ﬁE'Y. The inverse of T, T_l, is the map from the
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subspace R(T) into X given by T1(Tx) = x. If T is linear, then 771

is linear with domain R(T) and range D(T). T™1 exists and is continuous
iff there exists an m > 0 such that ||Tx]|| > m| [x|| for xeD(T). 1If
this is the case, m~1 > IIT-III. -1 is closed iff T is closed.

In a real H-space, H=(E, (-5-)), a linear operator S with domain

D(S) and R(S) both in H is called positive definite iff there exists

ay > 0 such that (Sx, x) > Yllxllz for all xeD(S). S is called
symmetric if (Sx,y) = (x,Sy) for x,yeD(S). A bounded operator

S €[H] is called RSPD if it is real, symmetric, positive definite.

This allows a characterization of equivalent inner products by a
special case of the Lax-Milgram theorem [10].

Theorem 3.2: The inner products in Hl = (E, (-,-)l) and Hz-(E, (-,-)2)
are equivalent iff there exists an RSPD S e[Hj] such that

(x,y)2 = (X,Sy)l = (Sx,y)1 for all x,yeHl.
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4, Spectral Theory

Let T be a linear operator with D(T) and R(T) both in a normed
linear space X. The distribution of values A for which the linear
operator (AI - T) has an inverse and the properties of the inverse

when it exists are called the spectral theory for the operator T.

Additional details can be found in [10, 13].

Definition 4.1: If A, is such that R(A,I-T) is dense in X and A I-T
has a continuous inverse (AOI-T)’l, Ao is said to be in the resolvent
set, p(T) of T; the inverse ()\OI--T)_l is denoted by R(Ao; T) and is
called the resolvent (at Ao) of T. All complex numbers, A not in
p(T) form a set, o(T) called the spectrum of T.

Theorem 4.l: Let X be a B-space and T a closed linear operator with
D(T) and R(T) both in X. Then for any Aep(T), the resolvent R(A;T)
is an everywhere defined continuous linear operator. The resolvent
set, p(T) is an open set of the complex plane. In each component
(maximal connected subset) of p(T), R(A;T) is a holomorphic function
of T, i.e. R{A;T) can be expanded in a convergent power sefies in
A-A, for Aoep(T) and |A-A°| sufficiently small. The coefficients of
the power series are in [X].

Example L.1: Let H = R™ and let A be an nxn real matrix. D(A) = H
and R(A) € H. The spectrum of 4, o(A) = {A 1(8), *os An(A)}. For
any A¢o(A), R(A; A) is bounded and is defined on all of H. A, being
bounded and defined on all of H, is closed.

Example 4.2: In example 3.1 the spectrum of T is the whole real line

since g%-a Ax always has a solution for every real A,
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2
Example 4.3: Let H = L°(0, 27) (gee example 2.3) and define H_ by
P

Hp {feH: ngo (n<+1) (an + bn ) < ©} o

Hp is dense in H. Define A by D(A) = H; and

-]
Af = - ] (n® + 1) (a  sin ny + b cos ny) feD(A).
n=0

A is unbounded but closed. A has a continuous inverse since

[agl] 2 [12]]
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5, Semi=-Groups and Groups

In order to examine the stability of solutions to partial

differential equations, it is necessary to be able to characterize

the properties of solutions, This is done by considering the proper-
ties of semigroups and groups of class (CO) or the strongly continuous
semi-groups and groups. In the following,reference to a semi-group
(or group) implies the strong continuity in (iii), Definition 5.1
(Definition 5.2)., Further details can be found in [10,13]. In the
following X is assumed to be a real B-space and H, a real H-space.

Definition 5.1: For each t €[0,=), let Sta[X]. The family {St;t;O}

C[X] is called a semi-group iff the following conditions hold:

(1) s, =85S for s,t>0; (i) §;=1; (iii) lim ”S:""St x| |=0
t—*to o]

for to>0 and all xeX,

Definition 5,2: 1If {Gt; - < t < o} € [X] satisfies (i) for —w<s,t <=

(1i1); and (1ii) for -= < t, <@ and all xeX, {Gt; -0 < t < w} ig
called a group.

It is clear that if {Gt; -® < t < o} i5 a group, then {Gt;t > 0}

v

and {G_; t < 0 } are semi-groups. If {St; t > 0} is a semi~-group, its

t’

norm satisfies for some M > 1 and 8 > 0

s |1 < me® (t 2 0) (5.1)

If 8 = 0, {St} is said to be equibounded and if in addition M = 1,
it is called contractive. If 8 < 0, {S }is called negative and

if in addition M = 1, it is called negative contractive. In

general, if {Gt; -0 < t < w} is a group,

Blt]

||Gt|| < Me (~o<t <) (5.2)

for some M > 1 and some B > 0. The same terminology as above is used

for the semi-group {Gt; t >0}, If {Gt; - o <t < w} ig a group, then
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for each t, G;l = G—t and both are continuous linear transformations

of X into X.

Definition 5.3: The infinitesimal generator, A, of the semi-group

{8_.; t > 0} is defined by

t?

Ax = lim [h‘l(shx - x)] (5.3)

h0"

for all x € X such that the limit exists.

It follows [10,13] that A is a closed linear operator with domain
D(A) dense in X with 0eD(A). Moreover, if xeD(A), then Ster(A) for
t 2 0 and

%‘E (stx) = Astx = StAx (XED(A)) (S-h)

In order to characterize whether an operator A generates a semi-group
the next theorem is needed.

Theorem 5.1: A closed linear operator, A, with dense domain and with
range in X is the infinitesimal generator of a unique semi-group

{s,; t 2 0} satisfying (5.1) for M > 1 and B iff there exist real

numbers M and B such that for every integer n > 8, nep(A) and

| |R(n;A)"]] < M(n-8)™ (m=1,2,...) (5.5)

In addition {St; t > 0} is

(1) equibounded iff l](I-n”lA)‘mll
1,,-1
7

M (n, m=1,2,...)

A

(2) contractive iff ||(I-n”

ftA

1 (n =1,2,...)
(3) negative iff |[(I-n™"a)™|| < M(1-n"18)™ (8 < 0; m, n=1,2,...)
. . . =1\ -1_y-1 _
(4) negative contractive iff ||(I-n""A)-1]| < (1-n"78) (B<0,n=1,2,...)
Theorem 5.1 is easily adapted to the case of A generating a group
{G,; = <t < »} satisfying (5.2) by replacing the conditions on n by,

In] > B, n > 0, n ep(A) and replacing (5.5) by:
<
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||R(n;8)"|| < M(|n| - 8)™™ (m=1,2,...)

If A generates a semigroup satisfying (5.1), then A-8I generates

a semigroup, T{ satisfying

7 || < nelB-8)® (5.6)
Conditions (1-4) hold of course for the semi-group {Gt; t > 0} and
simple modifications hold for {Gt; t < 0} since (-A) generates

{G_.; t >0}

-t?
All of the conditions of Theorem 5.1 are difficult to verify in
practice. The following and generalizations of these are more useful.

Additional details can be found in [10,29-32].

Definition 5.4: Let A be a linear operator with D(A) and R(A) both

in a real H-space. A is called dissipative with respect to the inner

product («s+) if (Ax, x) < O whenever xeD(A) and strictly dissipative

if there exists a y > 0 such that (Ax,x) 2 - v (x,x) for xeD(A).

Theorem 5.2 [10]: Let A be a linear operator with domain and range in

H such that D(A) is dense in H. If A is (strictly) dissipative and
R(I(1-y)-A) = H where y > 0 is a constant, then A generates a (negative)
contractive semi~group in H and Aep(A) for (Re A > =y) Re A > 0.

The last theorem leads to a result which gives necessary and suffi-
cient conditions for A to generate a negative contractive group in H.

Theorem 5.3 [32]: Let A be a linear operator with D(A) and R(A) in a

real H-space, H=(E, (-s+)) such that D(A) is dense in H, Then A
generates a group {Gt; - <t < »} in H such that {Gt; t 20} isa
negative contractive semi-group with respect to a norm, [l.lll, induced

by an equivalent inner product, (-s:),, iff there exist positive §, ¥y

1
with © > 8§ >y > 0 such that

- 8l1xl1% 5 (ax, 0] 5 - vlIxl1P 0 xe0(A))  (5.7)
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and
R(I(1-v)-A) = H; R(I(1+8) + A) = H. (5.8

In addition Aep(A) for Re A < - 6 and Re A > - ¥y.
Example 5.1: Let H = R® and let A be a real nxn matrix and use the
notations of examples 2.1 and 4.1. A generates a group. This follows
from the fact that for B > 0 sufficiently large,(ArBI) and (-A-BI) are
dissipative

((A-BD) x,x) = (tAx,x) - 8][x||2 < ([ [al]-8)]]x]|?
For 8 > ||A||, (*tA-BI) is dissipative and therefore by (5.6), both A
and ~A are generators of uniquely determined semigroups, {Tt; t > 0}

[1A] ]t

and {T;; t > 0}, which satisfy ||Tt|| < eHAIIt , ||T;|| <e for

t > 0. Thus A generates a group {Gt; -o < t < »} with

eIl Al It (o < t < =)

At

In fact, the group that A generates is {Gt m e ; ~® < t < o},

Example 5.2: Consider the d.e.

ou Ju
g=auvt b ™ (-= <t < =)

where a and b are constants. Let ¢ be the B-space of all real
continuously differentiable functions defined for x € R such that
$(x) > cy, a finite constant, as [x[+o. Let ||o|]| = sup [ (x)

xeR
For any ¢e? one can define a solution u(¢,t) with u($,0) = ¢ (x)-

in fact,
) u(e,t) = % ¢(xtbr)
The solutions of (*) for ¢ec? form a one-parameter family of trans-
formations of the space ¢ into itself. Gt defined by
G, ¢ = u($,t) (= < t < =)
form a group of operators. If a < 0 then {Gt ; t > 0} is a negative

contractive semi-group.
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Example 5.3: Using the results of examples 2.3 and 4.3, A is densely
defined with range in H = LZ(O, 27). (AI - A) for A > 0 has a continuous
inverse on H. A is dissipative since (Af, f) ¢ -(£,£). Thus A generates

a negative contractive semigroup, {St; t > 0}. 1In fact S, is given by

st ) @)

¢ (an sin ny + bn cos ny)

n=0
and

s Il ge®

{St; t > 0} can not be extended to a group, since for fixed t > O,
—(n2
defining £ (y) =sinny, ||f ||=1. S f =e (= +1)tsin n y and
n n tn
Ilstfn|| + 0 as n > » and therefore a continuous inverse (St)—l does

not exist. Thus St can not be extended to a group.
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6. Operator Differential Equations and Stability

Let X be a B-space and let A be a linear operator with D(A) and

R(A) in X. Consider the operator differential equation

dx/dt = Ax (xeD(A)) (6.1)
with initial condition x(0) = x_eD(A). A solution to (6.1) with
initial condition xosD(A) will be designated by ¢(t; xo). If A is
the infinitesimal generator of a semi-group {St; t > 0}, then from
(5.4) and (ii) of Definition 5.1, it follows that ¢(t; x,) = S¢Xo
for xoeD(A) and t > 0. Similarly if A is the infinitesimal generator
of a group {Gt; - o< t < o} ¢p(t; xo) = Gtxo for xoeD(A) and ~o<t<o,
In these cases, x = 0 is a solution of (6.1) and since (6.1) is
linear, any solution may be referenced to x = 0 by a simple trans-
lation. The following definitions are direct generalizations from
classical Lyapunov stability theory,

The null solution, x = 0, of (6.1) is stable if, given an e > 0,
a § >0 can be found such that leoll <§ and xoeD(A) implies
||¢(t;xo)|l < e for £ > 0. If in addition lim |l¢(t;x3|| = 0 as
t*o, x = 0 is asymptotically stable. If in addition, there exist
positive numbers M, B, T such that [[¢(t;xo)[[ < M exp(-8t) [Ixoll
for t > T, then x = 0 is exponentially asymptotically stable.

Theorem 6.1: If A is the generator of a semi—gfoup {St; t 3_0} (or

group) then: (i) I|St|| < M implies stability; and (ii) |]St]] < M exp (-Bt)
for B'> 0 implies exponential asymptotic stability.

This theorem is based on knowledge of the solutions to (6.1)
and thus corresponds to the '"First Method" of Lyapunov. The "Second

Method" or '"Direct Method" of Lyapunov is based on knowledge of A
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and certain functions called "Lyapunov functions" in finite dimensional
spaces. In B-spaces and in particular H-spaces, these become

"Lyapunov functionals'.
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7. Lyapunov Functionals and Stability

Roughly speaking, the direct method of Lyapunov consists of
finding a functional v(x) such that v(x) > 0, x # 0 and v(x), the
derivative of v(x) along solutions to (6.1) satisfies Vv(x) < 0 for
stability and ¥(x) ¢ -k v(x) (k> 0) for exponential asymptotic
stability. To obtain such a functional v(x) in a real H-space, a
defining bilinear functional is first obtained.

Definition 7.1: Let H= (E, (.,.)) be a real Hilbert Space. A

defining bilinear functional, V(.,.), is any inner product equivalent

to (.,.) in H. Thus V(.,.) = (.,.)1 where (.,.)l is equivalent to
(.,.) in H.
Theorem 7.1: V{.,.) is a defining bilinear functional in H iff there
exists an RSPD linear transformation Pe[H] such that V(x,y) = (x,Py)=
(Px,y).

This theorem is a direct result of Definition 7.1 and Theorem 3.2.
From V(x,y) the Lyapunov functional, v(x) will be obtained and it will
be a quadratic Lyapunov functional just as for a linear system in a
finite dimensional space, the Lyapunov function is a quadratic form.

Definition 7.2: The function v(x) = V(x,x) for xeH, where V(.,.) is

a defining bilinear functional in H, is called a (quadratic) Lyapunov

functional in H.

Definition 7.3: If ¢(t;x) is a solution to (6.1), the derivative of

v(x), v(x) is defined by

v(x) = lm 71 (v(e(t;x)) - v(x)) (7.1)

tsot

for all x such that this limit exists.
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Theorem 7.2: Let A be the generator of a semi-group (or group); then

v(x) is defined for all xeD(A) and is given by

v(x) = 2V(x, Ax) = 2V(Ax, x) (xeD(A)) (7.2)
Corollary: Under the hypotheses of the theorem
v(x) = 2(Ax, x); = 2(PAx, x)  (xeD(A)) (7.3)
where (.,.)1 is an inner product equivalent to (.,.) and Pe[H] is RSPD.
Theorem 7.3: If A is the generator of a semi~group, a sufficient
condition for stability (exponential asymptotic stability) is that
there exist a Lyapunov functional v(x) the derivative of which
$e0) <0 @ < - v |Ix]1% (v > 0))for xeD(a).
Theorem 7.4: If A is the generator of a group, a necessary and
sufficient condition for exponential asymptotic stability is that
there exist a Lyapunov functional v(x) such that G(x) satisfies for
o > ; g >0
<v(x) £ V(x) < -B v(x) (xeD(A)) (7.4)
The proof of Theorem 7.2 follows from Definition 7.3 and the fact
that V(y,y) - V(x,x) = V(y+x, y-x). The corollary follows from
Definition 7.1. Theorem 7.3 follows from Theorem 5.2 and Definition
7.1. The sufficiency of Theorem 7.4 follows from Theorem 5.3 and
Definition 7.1. The necessity follows from the fact that if
{Gt; - o < t < »} ig a negative group, then there exist four positive
constants © > M > 1 >m > 0, » >y 2> § > 0 such that
M exp(-vt) ||x|]| ¢ [IGtx|| < M exp(-5t) ||x|]|(xeH) (7.5)
and the definition of V(x,y) by
o
V(x,y) nof (Gtx, th)dt (x,yeH) (7.6)
where the integral may be taken as an improper Riemann integral and

(.,.) is the inner product in H (see theorem 5.3 and [32 ] for details).
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Remarks: In theorems 7.3 and 7.4, if the hypothesis that A generates

a group or semigroup is replaced by ones similar to those of theorems

5.2 and 5.3, then this theory also assures existence of solutions. The
extra hypotheses required, for example, are that D(A) is dense in H with
R(A) in H and that R(I-A) = H. In the case of H being finite dimensional,

these always hold and consequently are never explicitly stated.
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8. Applications

Example 8.1: The results of examples 2.1, 4.1 and 5.1 have shown
that if H = R and A is an n x n real matrix, A is the generator of

a group {Gt; -o t < o} with G, = et satisfying

e, || Jlallt

A

Theorem 7.4 gives a necessary and sufficient condition for A to
generate an exponentially asymptotically stable semi-group

{Gt; t 2> 0}. A need not be dissipative with respect to the inner
product (+s.) of R". However if the spectrum of A is restricted to
the left half complex plane, A is a stable matrix, and must generate
an exponentially asymptotically stable semi-group. Thus, an RSPD

matrix P is sought so that A is dissipative with respect to the

equivalent inner product (-s-)l where

(x,y)l = (Px,y) = x'Py

Thus

2(Ax,x)l = 2(PAx,x) = 2(x'A'x) = x'(A'P + PA)x

Setting A'P + PA = -R where R is RSPD yields the Lyapunov Stability
Theorem for %X = Ax, which is A is a stable matrix iff the solution P
to A'P + PA = -R is uniquely determined by R and is RSPD whenever R is
RSPD. The defining bilinear function is V(x,y) = (x,y)l = x'Py, the

quadratic Lyapunov function is v(x) = (x,x), = x'Px and its derivative

1

is ¥(x) = 2(Ax,x)l = -x'Rx. This illustrates the importance of the

concept of equivalent inner product in relation to Lyapunov Stability

Theory .
As a specific example, let H = R® with inner product (x,y) =
XY + XY 5 In x = Ax, let

x'y=
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A= H o(a) = {~1,-2}

s0o A should be a stable matrix. However, A is not dissipative with
respect to (+s+) since (Ax,x) = x"Ax = —x1x2~3x% is an indefinite
quadratic form. However if A'P + PA = -2I is solved for P, P is
unique and

2,5 0.5

P = ; o(P) = {0.382, 2.618}

0.5 0.5

so that P is RSPD implying A is a stable matrix. A is dissipative

and (Ax,x)l = -(x,x). From example 2.1, it follows that

-2.618(x,x), < (Ax,x), < -0.382 (x,x)
ls= 1l = 1

and therefore, if Re A > -=.382 or Re A < ~-2,618, XA € p(A) and R(A;A)

is a bounded operator defined on all of H. It further follows that

eAtlll < e—0.382t and lleAtll < 2.61 e—0.382t.

for t > 0, ||
Example 8.2: Letting H = L2(0, 2m) and using the results of examples
2.3, 4.3, 5.3, it is clear that the adequate Lyapunov functional is
defined by V(x,y) = (x,y) where (-»+) is the inner product defined for

L2(0, 21). Thus v(f) < -v(f) and therefore llstll < e-t.
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9. Partial Differential Operators and Sobolev Spaces

Most of the content of this section is taken from Dunford and
Schwartz [13]. While there are other approaches to the final formula-
tion of the theorems quoted here, [15-25], this particular formulation
seems best suited to the specific application of the theory developed.
The object is to first define what is meant by a formal PDO (partial
differential operator) defined in subsets of E'. Based on particular
properties of specific formal PDO's, closed operators in appropriate
Hilbert Spaces are obtained. The domains and renges of these operators
become the spaces introduced by Sobolev in 1935 and hence are usually
called Sobolev spaces. These spaces can be obtained in a variety of
ways, e.g. by functional completion of incomplete function spaces
{15,17,19,20,21], or by the introduction of distributions [13,18,24,25].
In some instances there are subtle differences in the properties which
may be imputed to these spaces using the various approaches, but there
is a common theory for the restricted class considered here. For details,
the interested reader should consult the references listed.

9.1. Subsets of R

In order to obtain a consistent notation and to avoid repetition in
the theorems quoted, I, Q, I', subsets of Rn, real Euclidean n-space, are
defined. The essence of the approach is to define an open subset, I & Rn;
in which a formal PDO is defined. I is assumed to be connected. £ <1 is
a bounded open subset of I such that Q, its closure, is a proper subset of
I. This assures that any formal partial differential operator is defined
in an open set containing {. Next, it is assumed that Q has a "sufficiently

smooth" boundary, T such that no point in T is interior to the closure of
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8. The description of a domain with sufficiently smooth boundary can
be made mathematically precise [13,19,20,22,24,25]. Such a domain
satisfies the "cone condition" of Sobolev [15,17,19,20], is "properly
regular" according to Fichera [22] or is "tres regulier" according to
Lions [24]. According to [13], a sufficiently smooth boundary of this
type can contain "corners", "edges", etc. as long as these configurations
are locally equivalent to the intersection of a finite number of hyperplanes
in E'. Some of the definitions and theorems below will hold even if @ does
not have a sufficiently smooth boundary.
9.2, Formal Partial Differential Operators

Let I R"™ be as described in the preceding section. Let J be an

n-vector with non-negative integral components
I = (J1sd5s +ees gn) (9.1)

Designate by |J| the sum

n
ol = ¥ 3 (9.2)

i=1

The symbol BJ means partial differentiation with respect to the components

of y ¢ Rn, i.e. for (9.1)
ajl + j2+‘ '+jn

3" = -
J J J (9.3)
1

Y 3, 2...Byn n

J
1f |Jl =0, 3° =1, Let aJ(y) be a real scalar function of y € I which

is infinitely (or sufficiently) differentiable in I.

Definition: [13] If m is a positive integer, then a real formal partial

differential operator, T, defined in I is, in general, given by

= (y)s? "
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The order of T is m. The formal adjoint of 1, designated by t¥, is the

differential operator defined by

() = I e (9.5)

J <m

Since T is real, t* is real. If T = 1%, then 7 is called formally self

adjoint. Actually, as will be made clear in a later part, t* is the formal
adjoint of 1 with respect to the L2(Q) inner product.
9.3. Sets of Functions

The set of Ck(I) consists of all those real scalar functions, f(y)
y € I, such that every derivative an, IJ} < k is defined and continuous
in I. The set Cﬁ(I) consists of all functions in C (I) such that the
closure of the set with £ # 0 is compact and a proper subset of I, i.e.
the set of functions in Ck(I) with compact support in I. The sets ¢ (1)
and C:(I) are correspondingly defined. The set Ck(f) is the set in Ck(I)
having all derivatives up to and including k in I, such that each partial
derivative has a continuous extension to I. If f(y) ¢ Ck(T), then BJf(y)
is defined, for y € I and |J| < k, as the extension by continuity of Je(y)
from I to I. Then ¢™(T) =Z\_gk(f), c(T) = c=(1), cK(T) = ¢X(I). The sets
c™(0), c=(a), c®(), K@), cC(a) = (@), cﬁ(a) = ci(ﬁ) are similarly
defined. Each of these sets with the usual definitions of addition and
scalar multiplication become linear vector spaces.

The Banach Space Ck(ﬁ)

Since § is compact we may define a norm for the Ck(ﬁ) functions for
0<k <o by
el @™ sl 25 13] sk, v e B (9:6)
Endowed with this norm, Ck(ﬁ) is a Banach space and the c”(8) functions

are dense in Ck(ﬁ) with respect to ll'llck(§)‘
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The Hilbert Space L2(I)

Let dy = dyl dy2...dyn be the Lebesgue measure in R™. Designate by
L2(I) the space of (classes of) real functions, f, which are square
integrable on I. The norm and inner product are defined for f, g ¢ L2(I)

as

(£,8), = [ 2(y) a(y) & (9.7)
I

((£,0))%/2 (9.8)

el
As indicated, the elements of L2(I) are equivalence classes of functions;
f and g belong to the same equivalence class iff f(y) = g(y) almost

everywhere in I, i.e.

[ (£ -gPay=0
I

The C:(I) functions are dense in L2(I), i.e. if the C:(I) functions

are completed in the | loponm,we have E:TT7'= L2(I). Similar definitions
hold for L2(q) and TH(A) = 12().
9.4, Integration by Parts

If 1 is a formal partial differential operator of order m in I, then
for any f ¢ Cm(ﬁ), 1f is continuous as is T¥f. With domain  and its
boundary I' as defined in Section 9.1, the Green-Gauss identity [1k4,22]

holds for the domain. This identity can be stated as follows:

Green-Gauss Identity:

Given any f, g € Cm(ﬁ), and T of order m, then

flgte) - £(t*g)lay = [ H(f,g)d(T) 9.9)
Q T

where H(f,g) is a bilinear differential operator in f and g of order at

most m -~ 1 and 4(T') is the surface area measure of TI.
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Second Order Partial Differential Operator

As a specific example [1T], if T is of order 2 in I and f(y) and

g(y) are in 02(5), v f is given by

it = % a..(y) §E£KXQ-+ ? b, (y) atly) , cely)e(y) (9.10)
i,3=1 iJ 8yiyj j=1 J ayj
and T¥g is given by
n %%(a.,g) 1o 3(b,g)
T*g = Z —a—‘—a—l"j—— - z ——a-—"j—— + cg (9.11)
i,5=1 Y1y =1 %

It may be assumed without loss of generality that aij(y) = aji(y). Then,

as can be verified by direct differentiation,

n da, n 3(b,fg)
3
gltel-t(t*g) = ] g;—-[aij(g %5- -f 5?*'- 5§li'fg} + ) a; (9.12)
i,j=1 i J J J i=1 i
Integrating both sides of (9.11) as in (9.8) yields
H(f,g) = gP(f) - £ P(g) + fgQ (9.13)
where
n n 3¢
P(f) = ) ( } 8 5 5—-) cos (v,yi) (9.14)
i=l  §=1 Yy
n n Bai
Q= ] (b, - ] 5;—1) cos  (v,¥;) (9.15)
i=1 J=1 V3
where v is the unit outward normal to T and cos (v,yi) is the cosine of
the angle between the outward normal, v, and the coordinate axis, yi.
If
n Bai n oda 5
b, = ] 35741 (= 1 ggfl-) (9.16)
J=1 J=1 7]
then Q = 0, and t = t¥%, that is 1 is formally self adjoint and can be
written as
% 2_ E af (9.17)
f = -~ a., ==~ )t c f e
i=1 Wy j=p 19y
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For convenience A = A' = (aij(y)) is the nxn symmetric matrix composed
of the coefficients aij(y) of the second order terms in (9.9).

Integration by Parts

It is possible under some circumstances that the integral on the
right of (9.8) is zero. This happens, for example whenever f e C™(%)
and g ¢ cm(ﬁ)llc:'l(n). Obviously if g ¢ Cg-l(ﬂ), g and all derivatives
up to order m-1 of g vanish outside a compact subset of Q implying H(f,g)

is zero along I' and therefore
£ e CR)

é gltf)dy = s{ £(t*g)dy (5 ¢ (@ N (a) ) (9.18)

This last formula is the usual integration by parts formula. It is to be

noted that 1 could be any formal PDO; in particular, T could be of order

one. If this is the case, we have

[ &l % a,(y) 3L dy =
Q =1 1 Wy

n n 3(a.g)
[ I agfal(l) =[] ——=—

dy
T i=1 g i=1
Thus, if g is zero on I', we obtain (9.17).
(<]
Note that if £, g ¢ co(n),
[ gltf) ay = [ £(<*g) ay (9.19)
I I

or in terms of the L2(Q) inner product (-s+) defined in (9.6),

(gs tf) = (t¥*g,f)

Integral Inequalities

A well known integral imequality is that of Poincar'e. If
u(y) e 2@ Nc_(a), then [27]

éu%y ;;} [ () (vu)dy (9.20)

—
bl
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where Xl is the smallest real number such that there is a smooth solution

to n 32
- bu = \u (a= 7§ =) (9.21)
i=1 oy,
i
and ‘
u(y) =0 (y eT) (9.22)

An estimate for Al can be obtained [27] from %- < d2 where d is the
1

maximum length of the edges of any rectangle RD .
9.5. Dirichlet Boundary Conditions

The particular PDO's considered later will be those satisfying
Dirichlet boundary conditions which represent a fairly broad class of
physical problems.
Definition: Let Q and I be as in 9,1, Let (av(r))J designate the jth
order derivative taken in a direction normal to I'. If f(y) ¢ Ck-l(ﬁ)
and an(y) vanishes for all y eI and IJI < k-1, T is said to satisfy

a Dirichlet condition of order k on I and this is designated by

(Bv(r)yjf(y) =0 yerol 0 <|J]s k-1
(9.23)

Remark: If § is a closed rectangle with sides, Pi, perpendicular to the

coordinate axes, ¥;» condition (9.22) becomes the more familiar

J
3 fgx) =0 yer, 0<Jsk-l
ayi i=1, 2, ...,n

(9.24)

The formula for integration by parts (9.7) is valid if t is of order
m and either f or g or both satisfy a Dirichlet boundary condition of order
mon T,

In the case 1t is of even order 2m and f and g both satisfy a Dirichlet

boundary condition of order m, then the Green-Gauss idenitity (9.8) holds
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where H(f,g) is a bilinear differential operator in f and g of order at
most m. This can be easily verified by the integration by parts formula
(9.18).
9.6 Distributions

There are at least two ways of introducing Sobolev spaces: the first
is by functioqal completion of certain sets of functions according to some
norn and the second is by the introduction of distributions and then the
restriction of distributions to form certain subsets which become the
Sobolev spaces. We choose the latter because»there is a fairly complete
theory relating formal PDO's and closed operators obtained through dis-
tributions [13].
Definition: Let {¢n} be a sequence of functions in C:(I) and let ¢ ¢ C:(I).
If there exists a compact subset, K, of I such that all of the functions, ¢n’
vanish outside of K and if in addition ¢,*¢ in the topology of C:(I) (the

topology can be precisely defined [13]) then we denote this by
¢n e ¢ in I.

Definition: A linear functional, F, defined on C:(I) such that F(¢n)»F(¢)

whenever ¢n:¢ in I is called a distribution in I.
Definition: The class of all distributions in I will be denoted by D(I).
In order to connect a distribution, F, to a Lebesgue integrable function,
£, in I we have the next definition.
Definition: Let f be a function in I which is Lebesgue integrable over every

compact subset of I. Then the distribution F defined by

F(¢) = [ o(y) £(y) ay (¢ & C(1)) (9.25)
I

is called the distribution corresponding to f. A distribution, F, which




- 35 -

corresponds to a function, f, in this sense is said to be a function.
If £ 1s in L,(I), C™(I), Co(I), etc., F will be said to be in L,_(I),
cm(1), C:(I), etc.

In general, we simply identify a distribution which is a function
with the function to which it corresponds. There is a unique distribu~-
tion associated with any two functions equal almost everywhere in a

given sense, for example in L2(I). If F corresponds to any continuous

function, it corresponds to a unique continuous function.

Corresponding to the concept of '"generalized function' is that of
"generalized derivative''. We first consider the case where f ¢ c™(1)
and T is a formal PDO of order m. Thus tf is a function € C(I) and
hence there is a distribution which we will call tF corresponding to

tf.

(B @) = [ DG ¢y (4 e C (I) (9.26)
1

By (9.18) it immediately follows that

(tF) (#) = [ £(3y) (1*¢) (y) dy = F(t%*¢) (9.27)
I

and hence, "generalized differentiation'" is defined by
(TF) (9) = F(1%p) (¢ e C (1) (9.28)
Thus, "generalized differentiation' is defined whether F corresponds
to a function f or is a distribution.
In order to determine if F corresponds to a function, f € LZ(I)
the next theorem holds [13].

Theorem 9.6.1: The distribution F corresponds to a function £ € LZ(I)

iff there is a finite constant K such that

IF) | < xllsll, (¢ € C5(D) (9.29)
It is clear from (9.27) that if T is a formal PDO in I and

F, G € D(I) then
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1(aF + BG) = a(tF) + B(tG)

(aT1 + BTZ)F = a(rlF) + B(TZF)

(rlrz)F = Tl(TZF) (9.30)

9.7. The Sobolev Spaces

The Sobolev spaces are instrumental for the study of solutions to
PDE's. Here, we will consider only those Sobolev spaces which are real
Hilbert spaces. More details can be found in the references [13-28].
Definition: Let k be a non-negative integer. The real Sobolev space Hk(I)

is defined by

#5(I) = {F e D(1); &F e 15(1), |J] <X} (9.31)
The inner product (-s+), and norm l|~ilk are defined for F, G ¢ H'(I) by
J d
(F,6), = T [ ) (y) (3G) (y)ay (9.32)
|Tl<k I
1/2

lEll, = (7, B),) (9.33)

Definition: The real Sobolev space Hg(I) is defined by the closure of the
C:(I) functions in the norm ll‘l!k of H¥(I). 1In general, Hg(I) is a proper

subspace of 7#5(1).
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Remark : Hk(ﬂ) can be obtained by the functional completion of the Ck(ﬁ)

(or ¢ (&) functions with respect to the norm | ||| The additional

k.
elements needed to complete the space are the so called "generalized
functions" or "ideal elements" which are the limits of Cauchy sequences
in the |I-||k norm.

Theorem 9.7.1: Hk(I) is a (complete) Hilbert space with inner product
(+5+),

Theorem 9.7.2:

and norm ||*||, and Hi(I) is a closed subspace of 7 (1).

k

KO(1) = #2(1) = L3(1)

BI(I) €HY(I) (2> 32k

v
fiv

0)

#(1) g HN(T) (= >

v

k

v

0) (9.34)

The identity mapping (or imbedding) of HJ(I) (Hg(I)) into Hk(I) (Hi(I)),
for » >3 >k >0 is norm reducing and therefore continuous.

Theorem 9.7.3: Let T be a formal PDO of order k with ¢™(I) coefficients.

Then for « > j

itv

k>0, and F ¢ HJ(Q) (F € Hg(ﬂ)); T regarded as a mapping
1: F > t F, is a continuous linear mapping of HY(Q) into Hj—k(n)).

Theorem 9.7.4: Let n be a positive integer and let [n/2] be the largest

integer smaller than n/2. Let j and k be integers with = > k > j > 0.
(i) The natural identity mapping of Hk(ﬂ) into HJ(Q) is a compact
linear mapping, i.e., it takes bounded sets in Hk(Q) into
compact sets in HJ(Q).
(ii) 1If there exists a non-negative integer m such that k - [n/2] - 1 > m,
then each element in Hk(Q) is (has a representative which is) an
element of C'({i) and the natural identity mapping of Hk(Q) into

C¢™(%) is a compact linear mapping with

My (9.35)
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vwhere M is a positive constant depending only on the domain Q anq the
norms in (9.35) are as defined in (9.6) and (9.33).

The following density results, already implied previously, are
useful in applications.

Theorem 7.7.5: For any p = 0,1,2,..., the subset C (&) of HY(Q) is

dense in HP(Q) with respect to the |l-[]p norm.

Theorem 9.7.6: The subspace C:(Q) of D{Q) is dense in D(Q). In parti-
cular C:(Q) is dense in Hg(n) for p = 0,1,2,.+. .

Integration by Parts Formula

The integration by parts formula (9.17) is valid in the Sobolev

Space [22]:

[ gxt)dy = { f(t*glay (f e HY(Q); g ¢ H’;‘(Q)) (9.36)
Q Q

Integral Inequalities

The integral inequality (9.19) is valid in the Sobolev Spaces [22,27]

[ofey s £ [ (w)'(wley  (uwe BA(DNEL(R) (9.37)
f 1 Q

where Al is as determined by (9.21).
9.8. Elliptic Partial Differential Operators

The PDO's studied here will be real, elliptic and of even order, i.e.,

we assume

= aJ(y)aJ (9.38)
| 7] <2p

where t is defined in I. The order of T is 2p for some positive integer p
and the aJ(y) are real. For these operators, on functions satisfying
Dirichlet boundary conditions, the theory is fairly complete [13].
Definition: 1t is said to be elliptic in I if for each nonzero vector

£ in R®

) as(y) & #0 yel (9.39)
|7|=2p
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where EJ is given by
3, J J n
J _ Y1 .“2 n -
=g gt (] 3 =43) (9.40)
Definition: Let Q¢I be as defined in 9.1. If a positive constant

co exists such that

(-1)P 7§ aJ(y)EJ > e, [£|2p (y € 2) (9.41)
|7|=2p

for every real nonzero £ € En, then 1 is said to be strongly elliptic

in Q.

Theorem 9.8.1: (Garding's Inequality) If t is of order 2p and is

strongly elliptic in Q, there exist two constants, k > 0, K < » such
that

(v 2, £) + Kz, £) 2 kl[e]]] = xlr,0) (£ e c(a) (9.42)

where (.,.)o and (u-)p are the inner products for HO(Q) = L2(Q) and
HP(Q) respectively.
Remark: It is assumed that the aJ(y) are sufficiently smooth. If 71 is
strongly elliptic then, from the integration by parts formula, (T f, f)o =
(£, 'r*f)o for f ¢ C:(Q) and therefore t* is strongly elliptic and satis-
fies the same Garding inequality (9.41). It is the Garding inequality
which is instrumental in the establishment of stability conditions in
Section 10.

The second order example of t given in (9.9) is strongly elliptic if
A=A = (aij(y)) is a negative definite matrix for every y ¢ 9.
9.9. Closed Operators in L2«2)

In order to obtain a closed operator densely defined in an appropriate
Hilbert space, in this case, Lzﬁl), the following theorem taken from the

contents of [13] (pp. 1730-kk) is valid.
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Theorem 9.9.1: Let @, T and I be as in Section 9.1. Let T be a real,

formal, strongly elliptic PDO of even order 2p in I. Let k > O and
K < » be as determined in 9.41. Let T and T be the operators in the

Hilvert space, L2(Q), defined by

~

D(T) = D(T) = {f e Cm(ﬁ)Q (av(r))'j—lf(ﬂ = 0, j=l!2,"'9p’ Yy e r}

~

Tf=1f; TFf = 1% (f € D(T) = (1)) (9.43)

<l

Let V and V denote the operators whose graphs are the closures of the

-

graphs of T and T, respectively. Then

-~ -~

(i) Vv* = v, V*# = V; (V¥ is the Hilbert Space Adjoint of V)

(1) D(V) = D(V) = D(V*) = D(V*);

(111) D(V) = ER(@)) B2P(a);

(iv) (vf, £)  + K(f, £)_ 2 k(f,f)P (f e D(V))
(v) (vf, £)  + K(f, £) 2 k(f, f)p (£ e D(V));

(vi) the spectrum of V, G(V), is a countable, discrete set of points
in the complex plane with no finite limit points;
(vii) if (£,£) 2 ¥(£,£) for £ e C_(R), then Re A < y implies v € p(V);
(viii) if T = 1%, then V = V¥* = G = G*;
(ix) 4if x ¢ o(V), R(x; V) ¢ [LZ(Q)] is a compact operator;
(x) if A € o(V), R(A3V) e [ HMQ), Hm+2p (2)] for every m >0,
(xi) if V £ e HYQ), £ ¢ HE2P(q) #2(Q) and for m + 2p-[n/2]-1 3 § 2 O,

£ e ¢I(f) and (av(F))kf(y) =0,yel, 0<k<min (j, p-1).

Remarks: Garding's Inequality is instrumental in establishing this result

and the Dirichlet boundary conditions are a substantial hypothesis needed

to establish the result in this way. The status of similar results for

other boundary conditions is not clear from the literature available to
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the authors, although much mathematical literature relating to these
problems is available. The essential conclusion of the theorem for
this paper are (i-viii).

Through a convenient perversion of mathematical terminology, if
T is a real, formal, strongly elliptic PDO of even order 2p in I, V
obtained through theorem 9.9.1 will be called the closed extension
of T in the remainder of this paper. This means that the intermediate
process of defining T is assumed to have been done. Such a formula-
tion is valid for boundary value problems with Dirichlet boundary
conditions, but as remarked, is not valid in general for other boundary
conditions. D(V), since V* exists, is dense in LQ(Q) and in fact

c>(2) € D(V) and is dense in 12(2).
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10. Applications to Partial Differential Equations

The general procedure in the remainder of the paper is, for
example, to consider a partial differential equation of the type
ut(y,t) + tu(y,t) = 0 satisfying Dirichlet boundary conditions,
where T is a formal PDO as described. V becomes the closed extension
of 1 in L2($2) and u(+,t) = x(t) ¢ Lg(Q) for each t. Thus the partial
differential equation is formulated as an operator differential equa-
tion %(t) = -vx(t) in L2(Q) or replacing -V by A, this becomes x=Ax
as described in Section 6. If A can be shown to generate a group or
semigroup as in Section 5 and in addition satisfy the stability theorems
in Section T, then the stability of the solution x=0 of X = Ax is
assured.

In every case, the crucial point in the stability analysis is
whether or not A is strictly dissipative with respect to some inner
product, i.e. whether a relation of the form (Ax,x)l h —‘y(x,x)l for
x € D(A) can be obtained. Since the C:(Q) functions are dense in
Hg(Q) and are in Hzp(n), then they are dense in Hg(Q)f\ Hzp(ﬂ). From
this fact it can be shown that if (—Tx,x)l < =v(x,x)1 for x € Cg(R)
then (Ax,x)1 < -Y(x,x)1 for x € D(A). Note that the evaluation of
(-tx,x)1 for x ¢ C:(Q) proceeds formally, but the explicit density
results assure that the same evaluation holds for (Ax,x)1 for
x e D(A) = Hg(Q)(\HZP(Q). The rigorous mathematical structure for
solutions then depends on the semi-group or group gemerated by A, and
the corresponding stability theory developed for the semigroup or

group structure.
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The specific stability results are with respect to the norm of,
the base Hilbert space, in this case, Le(Q). This is not a pointwise
stability result, but such a result may be possible by using the
Sobolev imbedding theorems as pointed out in the last Section.

To illusﬁrate the use of Theorem 7.3 consider first the class

of parabolic partial differential equations (evolution equations)
u, (y,t) + tuly,t) =0 (t 2 0) (10.1)

where 1 is a strongly elliptic PDO of even order 2p in I and suppose

u(y,t) is subject to the Dirichlet boundary conditions of order p:

(av(r))j uly,t) =0, O

A

J < p-1 yel, t>0 (10.2)

Equations (10.1) and (10.2) do not define an operator differential
equation (6.1). However, identification by u(-,t) = x(t) e Lg(n) for
each t 2 0 and using Theorem 9.9.1 allows the following formulation:
x = -V x = Ax x € D(V) = D(A)
(V) = D(a) = ()N E*2(0) ¢ 18(a) (10.3)

where V is the closed extension of t in L2(Q)

Theorem 10.1l: A sufficient condition for the null solution x=0 of the

system (10.3) to be the only equilibrium solution of % = Ax in (10.3),
and to be exponentially asymptotically stable with respect to the L2-

norm is that there exist a ¢ 2 1l such that:

(1) |1=]13 2 ellx||® x € D(V)
and
(ii) ck - K >0 (10.h4)

where k and K are the two constants satisfying Garding's Inequality

for 1 in (9.h41),
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The proof of this theorem follows from Theorems 5.2, T.3 and 9.9.1.

Since T is strongly elliptic A = -V satisfies from (iv) of Theorem 9.9.1
(Ax, x) < -knxng + K(x,x) x e D(A) .

Then by (vii) of Theorem 9.9.1 for ck-K > 0, ReX > -(ck-K) implies

XA € p(A), then A and thus -V generates a semi-group and satisfies all
of the conditions of Theorem 7.3 with v{x) = (x,x) and hence assures

the asymptotic stability of x=0 (or u=0). It is also true that A, since
0 € p(A), has a continuous inverse which assures that x=0 is the only
equilibrium solution.

Furthermore it can be shown that the imbedding of the closed sub-
space Hg(ﬂ) in Lz(ﬂ) implies that there exists a constant ¢ > 1 such
that (i) of Theorem 10.1 is satisfied.

The objective in the stability analysis becomes thus to determine
(1) the maximum value of ¢ (often from well known integral inequalities)
and (ii) the maximum k and minimum K such that Garding's Inequality
in (iv) of Theorem 9.9.1 is satisfied.

Example 10.1. As a first example let @ = (0,1) € RY and let

Tu=-a u__+ B u (10.5)

For 1t to be strongly elliptic o must be positive, thusa > 0. The
Dirichlet boundary conditions are u(0,t) = u(l,t) = 0.

Note that T is formally self-adjoint. The Lyapunov functional v(u)
can be taken as v(u) = (u,u) = 1 u2 d y and the evaluation of (Vu,u)
o
for u ¢ CO(Q) proceeds formally as follows:

1 2 1 2 2
(Vu,u) = f(~auu _ + B8 u)dy = f(auS + 8 u%)dy =a(u,u), + (B -a)(u,u)
° 7 o 7 ’ (10.6)

Using the well known inequality, valid here,



/ u? dy 2 N f u? dy (10.7)
there follows

1
(wou)y = J (a8 + ey 2 (+° + 1) (w,u)
o

or in other words c = w2 + 1 and this is a maximum. The condition (ii)
of Theorem 10.1 becomes now
(1r2+l)a+(8—a)=1r2a+6>0
A sufficient condition for asymptotic stability isa > O and B > —n2 .
From the above example and the formal manipulations, it becomes

apparent that the inequality (10,7) can directly be used to find a

sufficient condition for asymptotic stability by evaluating

12 2 2 1o
(Vuyu) = f(a u +Bu)day > (n"a +8) fu ay =
o 7 - )

= (1°a + 8) (u,u) ue D(v) (10.8)

The condition that is imposed on the coefficients of Garding's
Inequality for t is thereby implemented.

The second example was studied by Eckhaus [6] using approximate
methods. This particular example will show the important use of
equivalent inner products in choosing a Lyapunov functional, i.e. in
evaluating (Vu,u).

Example 10.2: Take again @ = (0,1) € R" and let

ru=—%§—%-ﬁ%y%——(y2ﬁu (10.9)
where R is a positive constant. The Dirichlet boundary conditions are
u(0,t) = u(1,t) = 0.

T is for R > 0 a strongly elliptic partial differential operator;
however, 1 is not formally self-adjoint. If a Lyapunov functional

v(u) = (u,u) is chosen, the evaluation of (Vu,u) results in:
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2

r_ 31
R

- 5°) (u,u) .(10.10)
R

(Vu, u) > (

where the inequality (10.7) has been used. A sufficient condition for

the asymptotic stability of the null solution u=0 is thus

o<R<-12—(1+2n2-[/1+u1?1). (10.11)

However 1 is equivalent to T3

where -
“YR! y2 ’ 2
w(y) = R Fy and p(y) = e Y . (10.13)

And T is strongly elliptic, and both o and V are self-adjoint with
respect to the equivalent inner product
1 2
(f.8), = [ £ gwlyly £, g € L°(2). (10.1%)
o

The sufficient condition for asymptotic stability of the null solution,

u=0, follows from evaluating

1 47 42 4R 42
y© ,3u,2 Ry 2 2,2
(Vu,u)_ = [{e (=) - R e (y° + S)ulay > 0 (10.15)
*w 5 oy B
}rﬂ 2
Application of the integral inequality (10.7) to e(l/2) Ry u, rather than
to u gives
ﬂ2 1
(Vu,u) 2 (g -vg\) (w,u) >0 (10.16)

Thus a sufficient condition for asymptotic stability of the null

solution u=0 becomes now

0 <R < o (10.17)

which is a considerable improvement over (10.11).
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The above example shows the importance of selecting the "optimum"
Lyapunov functional, i.e. the inner product for the space. The general
procedure is to introduce Te in such a way that the highest order odd
derivative of 1 is eliminated. This is once more illustrated in the
following example. Again taken from Eckhaus [6].

Example 10.3: For Q@ = (0,1) € R and R > 0 let

L 3 2
1 9 u 1 a~u 5 9 u 1 3u 1
Tu == —+ + o — e F oy (10.18)
R? oy’ RVR g3 IR 52 ypoy - b
and with Dirichlet boundary conditions
- = = du =
y=0 y=1
For t to be a strongly elliptic formal PDO of order 2p, p=2, R > 0.
Evaluation of (Vu,u) on the C:(Q) functions results in a sufficient
condition for asymptotic stability of the null solution u=0 of
Ly 2
O<R<zT. (10.19)
However, T is equivalent to T,
2 2 2
1 9 ) 13 139 1
= + + = + ==+ =
T 277 e 52 + e =k +3 (10.20)

2V

gives the sufficient condition for asymptotic stability of the null solu-

with p(y) = The subsequent evaluation of (Vu,u)w = (Vu,w(y)u)

tion as
16 2
——'"’

< R <
0 <R <75

(10.21)
Next consider the class of wave equations:

u  (yst) +au(y,t) + tuly,t) =0 (t 2 0) (10.22)
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with a being a positive constant and T now a strongly elliptic self-

adjoint partial differential operator of even order 2p in I. Again

let u(y,t) satisfy the Dirichlet boundary condition of order p (10.2).
By employing Theorem 9.9.1, (10.22) can be reformulated in terms

of a closed self-adjoint operator, V, where the following holds:

2
Sxsaivx=o (x € D(V)) (10.23)
at

V extends 1 (10.24)
(V) = B2 (2)\E*(a) € 12(a) (10.25)

Equation (10.23) can be written in the form (6.1) by transforming to

dx
T=Ax, 04 = @)N1P(2) x 1(q) (10.26)
where
b 4 0, 1
X = 1 = H f\_= (10.27)
x2 b -V, -a
Since
X
Axs= :
-V xl - a x2

there also follows R(A) = HJ(2)xR(V) = H(9) x 12(9).
The following theorem can now be proven:

Theorem 10.2: A necessary and sufficient condition for the asymptotic

stability of the null solution of the system given by (10.26) and (10.27),
where V is the closed extension of the strongly elliptic formally self-

adjoint PDO 1, is that there exist a ¢ > 1 such that

el Ix 1% (x,=x & D(V))

v

(1) Il

.. K
(ii) k = s 2

™

> 0 (10.28)

(iii) a >0
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where k and K are the constants satisfying Garding's Inequality for t.
The proof of this theorem is based on the Theorems 5.3, 7.4 and

9.9.1 by constructing the bilinear functional

(x, B x) (x e c (2) x c (a)) (10.29)
where
2
A 2V +a , a
P= (10.30)
a , 2

An evaluation of (x, P x) together with the condition (i), (ii)

and (iii) of Theorem 10.2 gives

o>

x)

(x,

v

K 2
+ - =
29:(xl,xl)p 2c(k . s)(xl,xl) + a (xl,xl) + 2a(xl,x2)
2
+ = d
+ 2(x2,x2) > d[(xl’xl)p (x,, x2)°] al|x| IP,o (10.31)
where d=d(e) is some positive constant.
Since the coefficients of 1t and thus V are uniformaly bounded on

there exists a constant D, O < D < = such that

(x, ij;_t_) < D[(xl,xl)p+ (xe,xe)] = D||x] |i 5 (10.32)

?

The bilinear form (_}_:_,ﬁ:_) being defined on a dense subset of Hg(ﬂ)xLz(Q) and
being bounded can be extended by continuity [10] to the form (x,Px) which also
satisfies (10.31) and (10.32) and P ¢ [Hg(Q) x 12(Q)] is RSPD, or in other
words (x,Py) is an equivalent inner product in the Hilbert space Hg(ﬂ) X L2(Q) .

Similarly an evaluation of (A x, P x) for x ¢ ColR) x c(Q) gives

(Ax, Px)= -a(Vxl, xl) —a.(xe,xa)

LY

- a.t-:(xl,xl)p - ac(k - % - e)(xl,xl) - a(x2,x2)

itA

—e [(xl,xl)p+ (x2,x2)] = -e||x] |2p o (e=e(e)) (10.33)
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for some e > 0. It can also be shown that there exists a constant E,

0 < i < » guch that
(A x, P x) 2 -E Ingp (10.3L)

Thus A generates a group if A satisfies the conditions (5.8) which
can be shown [30,31]. Furthermore let
v(x) = (x, P x)
Then it follows after combining (10.31), (10.32), (10.33) and (10.34)

that there exist ano and B, ® >a > B > 0 such that

-a v(x) g ¥(x) £ -8 v(x) x e D(A) (10.35)
. 2B 2e ‘s
by lettinga = D and B = I Thus the conditions of Theorem T.l4 are

also satisfied and the null solution x = 0 (and thus u=0) of (10.26) is
asymptotically stable.

Thus for a > 0 the stability analysis of (10.22) requires only an
evaluation of (Vx,x), where V is the extension of 1. This evaluation must

however proceed as follows

(vx,x) > s(x,x)p + c(k-§-~ e) (x,x)e (10.36)

In order to establish bounds on the system parameters one can take ¢
sufficiently small and thus require ck -~ K > 0. The particular choice of
the matrix P, (10.30), is motivated in [T].

Example 10.4., Let T be defined as in Example 10.1. The conditions for

stability follow immediately from the evaluation in Example 10.1 as
a >0,a >0 and 8 > -n2 a . However, the Lyspunov functional v(g) must

be chosen as

1
v(u) = { {2« us + (28 +8%)u + 2aun

+ 2u§}dy (10.37)
o]

t

and the stability is with respect to the norm for the space Hi(ﬂ) X L2(Q),
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Example 10.5 Let T be defined as in Example 10.2, then since Theorem

10.2 requires 1T to be self-adjoint the evaluation of the Lyapunov fﬁnc-
tional and its derivative must be done with respect to the inner product
as defined by (10.14). The conditions for stability follow from
(Vu, u)w >0as, a > 0and 0 <R < wh.
In Theorem 10.2 and Examples 10.4 and 10.5 only self-adjoint
strongly elliptic PDO's have been considered. In all these cases the
stability analysis can be based on an evaluation of (Vu, u) only, where
V is the closed extension of T.
However, one is certainly not formally limited to self-adjoint
PDO's., Consider agaih equation (10.22) and let 1 just be a strongly
elliptic PDO of even order 2p in I. And let the Dirichlet boundary
conditions (10.2) be satisfied. Then the natural coice of Lyapunov

functional is:

v(u) = [ [a(t + t*)u + a2|u|2 +aunu

- 2
] tauu + 2|ut| lay (10.38)

t

where u designates the conjugate of u. The derivative ¥(u) becomes now:

¥(u) = -a f [U(t + t™*)u + u(t - T*)ut - ﬁt(r - %)y + 2lut|2]dy (10.39)
Y]

In order to formally derive sufficient conditions for asymptotic
stability, v(u) and v(u) must be considered in their totality as given by
(10.38) and (10.39). The term [ G(t + t*)u 4y can again be evaluated with
Garding's Inequality, since bothQT and t* satisfy (9.42) for identical

coefficients k and K. The second and third term in (10.39) necessitate a

further evaluation as will be shown in the following example.

Example 10.6 Consider the panel flutter problem as for example studied by
Parks [5]. From the nondimensional equation for the panel motion of [5] the

following partial differential equation can be derived:



2 L 2
%+£%+i%_£%+&ﬂ:o (lOehO)
3t H uay Uay Uy

with @ = (0,1) g’ﬁp, Here, d, the flexural stiffness parameter, u, the

panel-air mass ratio, and M, the Mach number, are essentially positive; f,

the tension parameter, may be positive or negative. The boundary condi-

tions are u{0,t) = u(l,t) = 0 and uy(o,t) = uy(l,t) = 0, In this case

the Hilbert space would be Ho(2) x L2(Q).

For d > 0 and u > O,

2
o 9 (10.41)

M
;;h Woay? WO

is a strongly elliptic PDO. Similarly for the formal adjoint of T, 1%,

given by
L 2
T*=d_§..h_ iﬁ._z_ M-%._ . (10.42)

The evaluation of the Lyapunov functional (10.38) for this case

with a = %-> 0 requires the evaluation of f u(t+1%)u dy = f UTu dy = 2(tu,u)
Q Q

which should proceed as in (10.36). Carrying out the integration by parts,
applying the integral inequality (10.7) and letting € - 0 gives
u>0, f+ n2 d>o0 (10.43)
as the conditions for v(u) > 0.
Similarly for the derivative v(u) as given by (10.39) can be
written:

v(u) 2 -2a[e(u,u)2 + {(%-— e)n2 + (%-— 2e)}(uy,uy) + 2 Ekuy, ut) +

+ (g, u) + e(r® - 1) (u,u)] (10.4k)
1f M < u(f + n24), then from (10.h4) it follows that

v(u) g -2 & k[(u, u), + (u,, u.)l (10.45)
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where k = k(e) > 0 for € > O sufficiently small. Thus the conditions
for ¥(u) to be negative definite follow as:

£+12a>0 and M <u (f+n2d). (10.16)

It can be shown that formally, all the conditions of Theorems 5.3 and
T.4 are satisfied, so that the conditions for the asymptotic stability

of the null solution of (10.40) are:
W>0,d>0, f+1°d>0 and M < u(f + 1d)  (10.47)

These results, formally derived, are compatible with those dbtained

by Parks [5].
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11. Additional Results and Suggestions for Further Research

The theory presented in this paper has been extended in several
directions. A logical direction, of course, is to extend this to
partial differential equations which are nonlinear. This has been
done making use of results originally obtained by Kato [33,34,35,36].
Essentially, instead of having a semi-~group or group of linear opera-
tors, one assumes the existence of a semi--group of nonlinear operators
{Tt; t;O} where T, for each t > 0 is nonlinear and defined on a
Hilbert space, H. As a result of this assumption, the infinitesimal
generator A, is defined on a subset of the Hilbert space H and is a
nonlinear operator. If the nonlinear semi-group is contractive then
(-A) is an m-monotone operator. If (~A) is an m-monotone operator
and linear, then A is a dissipative operator, which connects this
theory to the theory encompassed under that of linear semi-groups
defined on a Hilbert space H. Since the theory of nonlinear semi-
groups and nonlinear infinitesimal generators has been developed
only recently, some of the fine structure of this theory has not
yvet been established. For example, the domain of a nonlinear opera-
tor A need not be dense in the Hilbert space H. It turns out that
if A is a linear operator, then the domain is dense if it generates
a linear semi-group. In addition, solutiomns to the operator equa-
tion X = Ax no longer have all the nice properties that exist in
the case of linear semi-groups. However, even with all these limita-
tions, the classical Lyapunov stability theorem on differential equa-
tions with an asymptotically stable linear approximation and a
nonlinear part carries forward into the partial differential equa-
tion case; that is, 1f the linear approximation is asymptotically

stable, then under the proper assumptions regarding the nonlinear
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term, the nonlinear equation is asymptotically stable also in some
neighborhood of the origin. There exists a great deal to be done
in the nonlinear cases.

Another direction in which extensions have been made to the
present theory is in the choice of Lyapunov functionals. Essentially,
in this paper, Lyapunov functionals have been restricted to the class
of equivalent inner products for a Hilbert space. It turns out that
there is a natural extension to the concept of inner product, which
is called a semi-inner product [10,31,32,37,38]. This natural
extension leads to a much broader class of possible Lyapunov func-
tionals, which in turn lead to significant developments. The first of
these is that the Lyapunov stability theory can be extended to Banach
spaces, that is,.spaces which do not necessarily have an inner pro-
duct structure. The second of these is that a theorem similar to
Theorem 7.4 can be proved for semi-groups using the semi-inner product
formulation in either Hilbert space or Banach space [31,32].

An additional limitation in the present paper which should provide
an opportunity for further research is that the formal PDO, 1 and the
associated boundary value problem consists of the Dirichlet problem.

If one attempts an extension of theorem 9.9.1, which is the basic

theorem to connect partial differential equations with operator differ-
ential equations, one is faced with an extremely d%fficult problem even
in the linear case. Essentially, what is required is additional mathemat-
ical analysis. It should be emphasized, however, that the main difficulty
does not lie with the general approach to the problem as detailed in this
paper, but a specific result that is required, which in this paper, for

the Dirichlet problem, is emcompassed in theorem 9.9.1. Once a more
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general result of this type is available, the general theory for
partial differential equations with non-Dirichlet boundary conditions
should proceed in much the same way as indicated in this paper.
Another direction for further research, is to determine the
stability with respect to different norms. In this paper the main
stability result is with respect to the Lz—norm. There are many
physical problems where stability with respect to norms other than
the Lz-norm is important. Once again however the difficulty is in
the details of the proof for a theorem such as theorem 9.9.1. What
one would try to do, as a conjecture, would be to close the operator T,
not in L2 but in a sobolev space such as H®(Q) which becomes the base
Hilbert space and stability is with respect to Il-llm of H'(Q). If
m is sufficiently large, the Sovolev embedding theorem from (xi) of
Theorem 9.9.1 can be applied which states in essence that elements
of HB(Q) are in cI(R) if m >> jo If 1 is the imbedding operator

from H®(Q) to Cj (Q), then from the norm relationship

NEETIEE
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it follows, I 0 ¢ Cj(ﬂ) is asymptotically stable with respect to the Cj(Q)-
norm if 0 ¢ Hm(ﬂ) is asymptotically stable with respect to the Hm(Q) norm.
This is not strictly pointwise stability, but if one dis willing to ignore,
at each t > 0, the distinction between equivalence classes of functions
which are the eleménts of H®(Q) and a Cj(ﬂ) function which is a representa-
tive of such an equivalence class, one has "almost everywhere pointwise
stability"”.

An additional possibility is the proof of LaSalle's Theorem [39]
in these Sobolev spaces. An essential requirement in LaSalle's Theorem is

compactness of a set which in H = R® is assured if the set is closed and
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bounded. In a Sobolev space, Hm(Q) a closed bounded set, say
Vq = {x ¢ Hm(n); |Ix||m < q}, is not compact, but if Vq is imbedded
in Hmﬂj(ﬂ) for j=1,2,c'-,m,1hl§§Hm’j(Q) is compact and perhaps from
this, LaSalle's Theorem can be proved.

Of course, this mathematical formulation for solutions to par-
tial differential equations can be pursued in directions other than

stability theory, for example optimal control, numerical approximation,

etc.
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12. Summarz

The purpose of this paper has been to present a rigorous
approach to the stability of partial differential equations. The
required mathematical machinery has been explored and applications
to a class of partial differential equations have been given. Much
of the formal manipulation of Lyapunov functionals for these types
of partial differential equations has been rigorously Justified. The
mathematical treatment to attain this is sophisticated but well within
reach of doctoral level engineers. This is a beginning--much is left

to be done.
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