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THE EXISTENCE AND STABILITY OF NONLINEAR WAVE EQUATIONS

by

C. V., Pao William G. Vogt

Department of Electrical Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania

1. TIntroduction
The object of the present paver is to establish some criteria
for the existence, the uniqueness and the stability or asvmptotic

stability of a solution of the second order wave equation

-g;% + a %¥-= Lu + f(x,u, gﬁi. %{)
.y 3 du du  du ) (-0
= i,jgl Egl(aij(x)5;j) + c(x)u + f(x,u, 5;;, 3t (x e Q)
with the boundary condition
u(t,x)' = h(x') x' e 3@ (1-2)

19}
where a > 0, @ is a bounded domain in Rn, 390 is the boundary of © and
f is a (nonlinear) function defined on some suitable space. By choosing
a suitable function g(x) defined on § such that g(x')=h(x') on 32 and
replacing u by u-g, equation (1-1) remains the same from with a homo-
geneous boundary condition except with a different function f. Thus we

shall assume that the boundary condition (1-2) is homogeneous. Let u,=u,

1
u, = G = %%3 then (1-1) is reduced to a system of equations of the form

0 1
3u
Eval u+ f(u (1-3)
L -a
where
uy 0
u = » £(u) = du *
u, , f(x,ul, T u2)
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By a suitable choice of a function space, equation (1-3) together with
the zero boundary condition may be considered as an abstract operator

differential equation of the form

du(t) +
~memee = A u(t) + £(u(t)) t e R = [0,») (1-4)
dt

where A is an abstract linear operator from some function space into
itself. In this paper, we shall formulate A as a linear onerator
mapping part of the Hilbert space H = Hi(ﬂ) X LZ(Q) into itself and f
is defined on H into H, and then apply the results developed for opera-
tor differential equations in [1] and [2] (which are based on the work
by Kato [3]) to establish criteria on the coefficients of the partial
differential operator L and on the function f so that the existence
and uniqueness of a sblution and the stabilitv or asvmptotic stab-~
ility of an equilibrium solution (or anv unperturbed solution) can
be ensured. We shall first discuss the equation (1-1) with £30 and
then consider the more general nonlinear problem which is closely
related to the linear form.
2. Background

Definition 2,1, By a solution u(t) of (1-4) with initial con-
dition u(0) = u_e D(A) in a Hilbert space H, we mean the following:
(a) u(t) is uniformlv Lipschitz continuous in t for each t 2 0 with

u(0) = u;

(b) u(t)eD(A) for all t > O and the strong derivative of u(t) exists

for almost all values of t > 0 and satisfies (1-4) a.e. in R+.

Definition 2.2. An equilibrium solution of (1-1) is a solution

u, such that for any solution u(t) of (1-1) with u(0) =u



iig(t)-geli =0 for all t > 0.

Tt can be shown that if u(t) is a solution of (1-4) then it is
an equilibrium solution if and only if Au(t) + f(u(t)) = 0 for all t >0
(cf [1D).

Definition 2,3. An equilibrium solution (or any unverturbed
solution) u, of (1-4) is said to be stable (with respect to initial

perturbations) if given anvy € > 0, there exists a & > 0 such that

Hu-u [ < 6 dimplies [lu(t)-u |l < e for all t 3 0;

u, is said to be asymptotically stable if
(i) it is stable; and

lim
tr

(11) Hu(e)=u 1] =0

where u(t) is any solution of (1-4) with u(0)=ueD(A). If there

exist positive constants M and B such that

(i)’ !lg(t)—gell < Me Bt )igfge!) for all t > 0

then u, is called exponentially asymptoticallv stable,
Definition 2.4. Let u(t) be a solution to (1-4) with u(0) = u,
A subset D of H is said to be a stability region of the equilibrium

solution u, (or any unperturbed solution) if for any € > 0 there exists

a 6§ > 0 such that
ue D and !lp—g?il < 8 imply l]g(t)fgell < g for all t > O,

Definition 2,5. Two inner products (+++) and (+,+)  defined on
the same vector space H are said to be equivalent if there exist some

positive constants ¢, v, such that

dllg!l < lLEl‘e < Y({Ell for all u e H, (2-1)



The following two theorems are from [1] and {2] bv the authors.
Theorem 2,1, Let A be a linear onerator with domain D(A) and
range R{A) both contained in a lilbert space H such that D(A) is dense

in H and R(I-A)=H. If A satisfies

(u,Au) < —Rllp|!2 (r > 0) for all v ¢ D(A) (2-2)

and £ s defined on all of U and satisfies
llf(u) - f(v)ll < k| |u=v!! u, v i (2-3)

for some k < @, then (a) for anvy anD(A) there exists a unique solution
uft) of (1-4) with u(0) = u : (b) any unperturbed solution (e.c., equili-
brium solution or periodic solution) is asymptotically stable if k < B
and is stable if k = 8; (c) a stability region is D(A) which can be
extended to the whole space H,

Remark: (a) An overator A satisfvine (2-2) is called strictlv
dissipative if £>0 and is called dissipative if 3=0, The number 2 is
called a dissipative constant of A. (bh) Weaker condition on f can be
found in [2].

Theorem 2,2, In theorem 2,1, if A is strictlv dissipative with a
dissipative constant 8 with respect to an equivalent inner product ("‘)e
and (2-3) is replaced by

M-t < kl o=yl u, v el (2-4)
for some k < 8, then all the results in theorem 2.1 hold,
3. TFormulation of Abstract Operators

Throurhout this paper, the following conventional notations will be
used: C™(2) denotes the class of all m-times (0 imZ ©) continuously
differentiable real-valued functions on §I; the subset Cg(Q) of CM(Q)

consists of functions in CT(Q) with compact support in §i; we denote



(u,v)o = [ u(x) v(x) dx u,v £ €20
Q2

n
(u,v), = [ (uEvE) + ) %}.‘:,(EE.),_ g;—t-(-)—c—)—)dx u,v e ctew

2 i=1 i i
Y20 1/2
l!u]lo (u,u)o . luAll = (u,u)l
u
where dx = dx1 e dxn is Lebesque measure iniin; for u = ,
. v1 1 )
and v =] "}lin C(2) x CO(Q), we define
v
2

(.!.1.' V)o = (ul’ Vl)o + (Uzg uz)o;

Uy Wy = (uge vdy o+ (uy, vyl

Hully, = (u, }{)}11/2 .

The linear space Ci(ﬂ) equipped with the inner product (u, v)1 is

an inner nroduct space, The closure in the norm ||.|], of Cé(ﬂ)

1
is a Hilbert space and is denoted by ui(n). The product space
H = Hg(n) x Lz(n), where LZ(Q) is the class of Lebesque square-

integrable functions with its usual inner product, is a linear

space with addition and scalar multiplication defined by

u1 + v1 o ul

u2+v2 auz

and it is a Hilbert space with the inner product (u, X)h‘

Definition 3.1, Let Qo be an open domain in the Euclidean space

Rn. The operator

‘Z‘ 22 ? 3
L = a, (x) s—e—— + ) b,(x) = + c(x) (xe )
1,§=1 ij 8x.axj 1=1 i axi o

is called a formal partial differential operator if aij(x) = a, (x)

ji



and together with bi(x), c(x) are all infinitely differentiable
functions in Qo; and L is called strongly elliptic if there exists
a positive constant a such that

n n

i§j=l a () g8z 0 izl £y (x Q) (3-1)

on R for any real vector § = (El, €2' ---,En).
Consider the strongly elliptic formal partial differential

operator in the divergence form

n
) 3
L= ] 35 (a0 55+ e xe s, (D)
i,j=1 i |

Let @ be a bounded subdomain whose closure { is contained in ﬂo
and whose boundary is a smooth surface 32 with no point in 3Q
interior to %, Assume that c(x) < O for x € & and write °m=i?%%—c(x))
and o = ma§ _ . Define T as a linear operator from LZ(Q)
xefi(=c(x)) o
into itself by the equations:
D(To) = {ue C(Ds ux) =0 for x e 39} (3-3)
Tou = Lu ue D(To)
then T° is a linear Ope?ator with domain D(T,) dense in LZ(Q) since
D(T_)®C_(9) which is dense in L?(2). We denote the closure of T,
(i.e., the smallest closed extemnsion of To) by T.
Lemma 3,1, Let To be defined in (3-3). Then for any u,v € D(T,)
(T jus v) = (u, T, v). Moreover, the closure T of T, is strictly dissipa-
tive with respect to the inner product (-,a)o.
Proof. For any u, v € D(T ), integration by parts twice and
notice that aij(x) = aji(x), it can easily be shown that (T u, V)=(u,Tov).

Integration by parts once and using the strong ellipticity of L, we

have for any u ¢ D(To)



n

(u, T u) = f{— 7} a du du c(x)uzldx
oo & i,§=1 ij axi ij
< - f [o ? (%P )2 ~ c(x) uzldx < -c “uf'z
= j=1 9%y m o

which shows that T  1is strictly dissipative. For any u e D(T), there
exists a sequence {u_} in D(T ) such that u *uand Tu_ - T u

n o n on
since T is the closure of Tye It follows by the continuitv of inner
prodnct that
lim < Hm

T u)

u, Tu = u
(u, )o n>e ( n® ono= nro

(=c_I1u 11%) = —c {ul|?
which proves the strict dissipativity of T.

Lemma 3,2, T is a linear operator with D(T)& Hi(Q) and R(T)< L2 ),
and for anv a > 0, (eI - T)-1 is an everywhere defined continuous
operator on LZ(Q) into itself,

Proof. By the definition of T,I)(T)C:Hi(ﬂ) and the spectrum o(T)
of T consists of a countable discrete set of points with no finite limit
point (cf., Dunford and Schwartz [4] theorem XIVf 6.23). lence there
exists a real number a, > 0 such that . ¢ o(T) which implies that the
resolvent R(a ; T) = (« I - T)—l is an everywhere defined continuous
linear operator on L2(Q5. Moreover the dissipativity of T implies
that (ol -~ '1‘)-l exists and is continuous for every o > 0 and together
with the condition D((aoI - T)-l) = LZ(Q) for some a > 0, we have
D((al ~ T)-l) = LZ(Q) for every a > 0 (cf, Kato [51).

In order to formulate the partial differential equation (1-3)
as an operator differential equation of the form (1-4), we define the
operator A by the following equations:

0 I

D(A) = D(T) x u(l)(sz) and A = (3-4)

where a > 0 is the constant appearing in (1-1).



Lemma 3.3, The operator A is a linear operator with domain

D(A) dense in U = Hi(ﬂ) x LZ(Q) and range R(A) in H. Moreover,
R(I-A) = H.

Proof, It is obvious that A is linear with domain D(A) dense
in H since D(T):>D(T0):>CZ(Q) which is dense in Hi(ﬂ), and Hi(ﬂ), when
considered as a subset of LZ(Q), is dense in LZ(Q). It is also
clear that R(A)e H since R(T)::I?(n). To show R(I-A) = H, let w = wl €
and show that there exists an u = Y1le D(A) such that (I-A) u = w,

u
which is equivalent to find an u; € %(T) and u, € Hi(ﬂ) satisfying the
system of equations
U - U, =Wy and -Tul + (1+a)u2 = Ve

By substituting u, = uy - Wy into the second equation yields

((1+a)1 - T)u1 = (1+ a) w, + w.,

1 2
By lemma 3.2, R(aI-T) = LZ(Q) for every o > 0 which insures the existence
of an u, € D(T) satisfying the above equality since (l+a)w; + w, is in

12(2). The fact that D(T)C ui(sa) implies u., =

o - W € Hi(ﬂ) which

"1
completes the proof of the lemma,
4, Equivalent Inner Product

In order to prove our main results, we shall introduce an
equivalent inner product on H with respect to which the operator A

is dissipative or strictly dissipative. Following the same idea used

by Buis (cf. [6]), we introduce a linear operator S defined by:

D(S) = D(T) x L2(®)

2T + aZI al
(o}

Su= u ue D(S) (4=1)
al 21

and show the following lemmas.

H



Lemma 4.1, The functional V(u, v) defined by

V(y, v) = (u, S¥) u, ve D)
is a continuous bilinear functional on D(S) (in the topology of H).

Proof. It is easily seen that V(u, v) is bilinear and that

uy v
for any u = , v=1 Yle D(s)
vu u, ¥ v,

2
V(u,v) = —2(u1'Tovl)o + a (ul,vl)o + a(ul,vz)0 + a(uz,vl)o + 2(u2,v2)o.

Integration by parts of the first term on the right and using the
Schwartz inequality, we have

n Bul oV

1
[-2¢uy, Tovp) b= 2| é[. I a5 5w - cupvgldx]
i,j=1 i 3

n 8

u
¢ [T ednZao? ()] Int
Q i=1 i 2 3=1

l dx )1/2

A

ax ] + ZCMHulHOHvl”O

L2032 F re a0 v o e dul] vl ]

/ (
a %y j=1 0 °%4

i=1

max maxla

where M = 1,3%

max
(X)l) and Sy = xed (-c(s)). It follows that

?V(g,y)! < k(||u1l|1 llvllll + !lull!o l!vzl!o + “uz!!o l‘vll!o +
NISTRICAIR

<t Cluglly + iyl vy + vl

where k = max (2Mn, ZC + az, 2). On squaring both sides of the abhove

inequality and notice that (a+8) < 2(a 2 + 82) for any real numbers

a, B we have
2 2 2 2, 1 2 2
which is equivalent to

Ve, w1 g kel Hylly (4-2)
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vhere

kl = 2 max (2Mn,2cM + az, 2). (4=3)

Thus V(u, v) is continuous in the topology of H which completes the
proof of the lemma.

Lemma 4,2. The bilinear functional V(E’ v) defines an equivalent
inner product on D(S) in H and the extension V(g, v) of V(u, v) to li
defines an equivalent inner nroduct on the whole space H,

Proof. Define (u, v)s = V(u, v). then (u, y)g is bilinear and

u v
for anv u =| 1 , v=] e D(S) we have by lemma 3.1
v 19 V2

2
(H' v)s -2(u1'Tovl)o +a (ul’vl)o + él(ul’VZ)o + a(“Z’vl)n + 2(u2.v2)0

2
-2(v1.Tnu1)o + a (v],ul)0 + a(VZ’ul)o + a(vl.uz\o + 2(v2,u2)O

(v

which shows that (g,v)q is symmetric., Integration bv parts and using

the strong ellipticity conditien of L, we have

f ? aul aul 2 2 2
(u,u)_ = 2 a.,(X) = == =2¢c(x) u; + (au, + u,) + u_]dx
s o 4,j=1 ij Bxi ij 1 1 2 2
n Ju
f 1.2 2 2 [ 12 _
2lza ] GpdT + 2¢) up + uyldx 2 Kyl lull] (4-4)
2 i=1 i
where
k, = min (20, 2c_, 1). (4-5)

Hence V(u,v) is positive definite on D(S) and t hat (u,u)  # 0 iff u 4 0,
It follows that (R,Y)s = V(u,v) defines an inner product on D(S). From
(4-2) and (4~-4), the inner product (g,v)s is equivalent to (u,_v)H on

D(S). Let V(u,v) be the extemsion of V (u,v) from D(S) to H and define

(g,z)e = V(g,x) for u, ve H (4-6)
then by the continuity of V(u,v) on D(S), V(u,v) possesses all the

properties of bilinearity, symmetrv, boundedness and positivity on H,
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Moreover, from (4=2) and (4-4)

ka2 < a2 < llull2 wem @)

Note that (H’X)e coincides with (g,y)S for u, v € D(S). Therefore
(-o-)e is an equivalent inner product of ("')H which completes the
proof,
Lemma 4.3, The operator A is strictlyv dissipative with respect
to (s+s+)e if a > 0 and is dissipative if a = 0 where a is the constant
appearing in (1-1),
Proof. We first show that A is (strictlv) dissipative on D(TO)XD(TO).

Forany u = Yle D(To) X D(To)
u
2
u, u, )
£ D(To) x L7(R) = D(S).

b
e
L]
"

Tu

1~ au2 To“l - au2

Since V(g,x) is an extension of V(u,v) we have, by the definition of §
and bv lemma 3.1,
(g,AE)e = (u,S Ag)o = —Z(ul,Touz)o + a(ul,Toul)o + 2(u2,Tou1)0 -
-a(uz,uz)0 = a(ul’Toul)o - a(uz,uz)o.

It follows by the strong ellipticity of L and the relation (4-7) that

n du du

(g,AE)e = a g [—i,§=1 aij(x) 3;%- §;§~+ c(x)ui - ugldx
] ohy? T+ 112 < -1 1ul 12 ca8)
s -a é[a iZl(axi) + e, Y1 + u2]dx < -aAI!H, g S =Bllull]
where
A = min (a, s 1), 8 ==§i . (4-9)

Thus A is dissipative on D(To) X D(To) if a = 0 and is strictly dissipa-
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tive if a > 0. Next we show that A is (strictly) dissipative on

Y Y2
€ D(T) x D(T ) then A u =
uz o) — Tul--au2

D(T)XD(TO). Let u

e D(S).

Hence
(u, AW, = (u,8 Aw) = =2(u,T u,)  + a(uy,Tuy) + 2(uy,Tuy) - aluy,u,) .

Since T is the closure of T_ in Lz(Q), there exists a sequence ﬁﬂf in

D(To) such that v u and Tovn+Tu in the topology of LZ(Q) which implies

1 1

bv lemma 3.1 that
(uZ’Tul)o = lim(uZ’Tovn)o = lim(Tou?_,vn)o = (Tou2‘ul)o'

Moreover bv Garding's Inequality, there exist constant c1s Sy such that
2 2 2
Mo [1] s e v+ el lv o <eg v 1 Tv [ eyl v 1T

we have v »u. in Hl(Q). Let u =] 'n| then u »u in H and thus u +u with
n 1 o “n u - - “n -
respect to Il-lle. It follows from 2(4--8) that

lim
(u, A E)e = a(ul,Tul)o -a(uz,uz)0 = n+m[a(vn’Tovn)o - a(uz,uz)ol

lim 127 = - 2 -
S e (=Bl 1121 = =8l {uf[] u i D(T)®D(T ). (4-10)
To show the dissipativity of A on D(A), let u = Y1 ]e D(A), that is,
u

2
u; € D(T) and u, € Hi(ﬂ). Then there exists a sequence {wn} in D(To)

such that wn+u2 in the topology of Hi(ﬂ) since D(To):>CZ(Q) which is

. 1 -Iv 1im =
dense in uo(u). Let u [Wi] € D(T)xD(TO) then noe Up = U and

where the convergence of both {gn} and (Aqn} hold in the topology of 1.

lience by the equivalence between I'-IIH and !l'lle,‘un+g and Agn+A3 in

the topology of H,. It follows from (4-10) that

(u,Au) | = i_i,z(yﬂ.l&pﬂ)e < =8|yl lz u € D(A) (4=11)
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which shows that A is dissipative if B=0 (i.e., a=0) and is strictly
dissipative 1if R>0 (i.e. a>0).
5, The Main Results

Theorem 5.1. Let the operator L in (1-1) be a stronglv elliptic
formal partial differential operator with c(x)<0 for x € U where @ is
a bounded domain in R" with sufficiently smooth surface 50. Then for
any initfal data uo(x) in D(T) and vo(x) in H%(O) there exists a
unique strong solution u(t,x) (in the sense of definition 2,1 with
u(t,x) strongly differentiable in t for all t>0) of the linear equa-
tion (1~1) (i.e,, £20) and the homogeneous boundary condition such
that u(O,x)=uo(x) and ﬁ(O,x)=Vo(x). Moreover, the null solution
u(t,x)=0 is stable if a=0 and is asvmntoticallv stable if a>0,

Proof. By»lemma 3.3 A is a linear operator with D(A) dense in
H and R(A) contained in li such that R(I-A)=li. By lemma 4,3, A is
strictly dissipative (resp., dissipative) with a dissipative constant
3 with respect to the equivalent inner product (.,.)e. It follows by
applying theorem 2.2 with £:0 that all the results stated in the theorem
hold, where the underlying Hilbert space is H. The strong differentiability
of u(t,x) for all t > 0 follows from a theorem due to Lumer and Phillips
[7] (see also [3]).

Theorem 5,2. lLet the operator L in (1-1) be the same as in
theorem 5.1, Assume that f is a function defined on all of H into
LZ(Q). If there exists a number k; 0 such that for anv u,v € Hi(ﬂ)
and u', v' € Lz(ﬂ)

t 2.1/2
ilf(x,u,ux yu)=f(x,v,v, .V')"og k(]lu—vl|§+ ) l'“x_'vx ‘!§+l'u'—v"lo)1/
i i i=1 i i

(5-1)



-1l

Then for any initial element uo(x) in D(T) and v (x) in ui(n) there

exists a unique solution u(t,x) of (1-1) satisfving the homogeneous

boundary condition such that u(O,x)=uo(x) and ut(O,x)=vo(x). Moreover,

anv unperturbed solution such as equilibrium solution or periodic solu-

tion (if any), is stable if k=(k2/k1)l/28 and is exponentially asymptotically

/28 where k

stable if k<(k2/k1)1 1,k2 are given by (4=3), (4~5) respectivelv
and R is given bv (4-9).

Remark, (a) The initial elements u (x) and v, (x) in theorems 5.1
and 5.2 can be in the spaces Hi(ﬂ\ andl;z(n) respectivelv since the initial
element in D(A)=D(T)xﬁi(ﬂ) can be extended to D(A), the closure of D(A),
which is equal to H; (b) The condition (5-1) can be weakened to some
extent (see [2]): (c) For k>(k2/k1)1/28, the solution in theorem 5,2 is
a weak solution,

Proof, It suffices to show that f(u) satisfies the conditions in
theorem 2,2 in the equivalent Hilbert snace He since by hypotheses all
the assumptions on A are satisfied as is shown in theorem 5,1, By

0 .
hypothesis, f =[f] is defined on all of H=Hi(ﬂ)xL2(Q) into H. By the

v
relation (5~1) for any u =[§,], v =[v'] in H, we have

HE@-t@ 1, 2 6372 [1£w-£) 1] =kt £, s, w1,

1/2

<

1/2
ky

k(!!u—vlli + t‘“"v'l!i)llz

< (kg /k)) kHu=vl] o (5-2)

where we have used the equivalence relation (4-7), Hence if (kl/k2)1/2 k<B,

/28, all the results stated in the theorem follows

: 1
that is, k < (k2/k1)
directly from theorem 2.2, 1In case k > (kz/kl)l/zR, the existence and
uniqueness of a solution in He satisfying the pronerties in the theorem

follow from [8] due to Browder, It has been shown in [1]1 that if

u(t,x) is a weak solution in an equivalent Hilbert space He, it is also
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a weak solution in the original Hilbert space ll, Therefore the
existence and uniqueness of a weak solution is proved for arv
finite value of k which completes the pronf’of the theorem.

Corollarv, Let the operator L in (1-1) be the same as in
theorem 5.1. 1If f(x,u,ux.. ut) = f(x) is in LZ(D) then all the
results in theorem 3,2 ho;d.

The condition (5-1) implies that £ is Tipschitz continuous
on H., Converselv, if f is continuous on H, not necessarilv
Linschitz continuous. we can weaken the condition (5-1) to =secme
extent as in the following theorem which can be proved in a
straight forward wav,

Theorem 5.3. Let the orerator 1. in (1-1) be the same as in
theorem 5.1, If f is defined and continuous on Y such that condition
(5~1) holds for anv dense subset D of H (e.g.. D=C:(“)XC2(Q)), then
all the results in theorem 5.2 are valid.
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