1,098 research outputs found

    Patient Self-Management and Tracking A European Experience

    Get PDF
    Item does not contain fulltex

    Diffusion-Weighted MRI: Distinction of Skull Base Chordoma from Chondrosarcoma

    Get PDF
    BACKGROUND AND PURPOSE: Chordoma and chondrosarcoma of the skull base are rare tumors with overlapping presentations and anatomic imaging features but different prognoses. We hypothesized that these tumors might be distinguished by using diffusion-weighted MR imaging. MATERIALS AND METHODS: We retrospectively reviewed 19 patients with pathologically confirmed chordoma or chondrosarcoma who underwent both conventional and diffusion-weighted MR imaging. Differences in distributions of ADC were assessed by the Kruskal-Wallis test. Associations between histopathologic diagnosis and conventional MR imaging features (T2 signal intensity, contrast enhancement, and tumor location) were assessed with the Fisher exact test. RESULTS: Chondrosarcoma was associated with the highest mean ADC value (2051 ± 261 × 10−6 mm2/s) and was significantly different from classic chordoma (1474 ± 117 × 10−6 mm2/s) and poorly differentiated chordoma (875 ± 100 × 10−6 mm2/s) (P CONCLUSIONS: Diffusion-weighted MR imaging may be useful in assessing clival tumors, particularly in differentiating chordoma from chondrosarcoma. A prospective study of a larger cohort will be required to determine the value of ADC in predicting histopathologic diagnosis

    Low Background Micromegas in CAST

    Get PDF
    Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. We report on the latest developments of the Micromegas detectors for the CERN Axion Solar Telescope (CAST), including technological pathfinder activities for the future International Axion Observatory (IAXO). The use of low background techniques and the application of discrimination algorithms based on the high granularity of the readout have led to background levels below 10−6^{-6} counts/keV/cm2^2/s, more than a factor 100 lower than the first generation of Micromegas detectors. The best levels achieved at the Canfranc Underground Laboratory (LSC) are as low as 10−7^{-7} counts/keV/cm2^2/s, showing good prospects for the application of this technology in IAXO. The current background model, based on underground and surface measurements, is presented, as well as the strategies to further reduce the background level. Finally, we will describe the R&D paths to achieve sub-keV energy thresholds, which could broaden the physics case of axion helioscopes.Comment: 6 pages, 3 figures, Large TPC Conference 2014, Pari

    Potential for Supernova Neutrino Detection in MiniBooNE

    Full text link
    The MiniBooNE detector at Fermilab is designed to search for νμ→νe\nu_\mu \to \nu_e oscillation appearance at Eν∼1GeVE_\nu \sim 1 {\rm GeV} and to make a decisive test of the LSND signal. The main detector (inside a veto shield) is a spherical volume containing 0.680 ktons of mineral oil. This inner volume, viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the scintillation yield is low. The entire detector is under a 3 m earth overburden. Though the detector is not optimized for low-energy (tens of MeV) events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE can function as a useful supernova neutrino detector. Simple trigger-level cuts can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical Galactic supernova at 10 kpc, about 190 supernova νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n events would be detected. By adding MiniBooNE to the international network of supernova detectors, the possibility of a supernova being missed would be reduced. Additionally, the paths of the supernova neutrinos through Earth will be different for MiniBooNE and other detectors, thus allowing tests of matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR

    Time-ordering and a generalized Magnus expansion

    Get PDF
    Both the classical time-ordering and the Magnus expansion are well-known in the context of linear initial value problems. Motivated by the noncommutativity between time-ordering and time derivation, and related problems raised recently in statistical physics, we introduce a generalization of the Magnus expansion. Whereas the classical expansion computes the logarithm of the evolution operator of a linear differential equation, our generalization addresses the same problem, including however directly a non-trivial initial condition. As a by-product we recover a variant of the time ordering operation, known as T*-ordering. Eventually, placing our results in the general context of Rota-Baxter algebras permits us to present them in a more natural algebraic setting. It encompasses, for example, the case where one considers linear difference equations instead of linear differential equations

    The angular distribution of the reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n

    Get PDF
    The reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n is very important for low-energy (Eν≲60E_\nu \lesssim 60 MeV) antineutrino experiments. In this paper we calculate the positron angular distribution, which at low energies is slightly backward. We show that weak magnetism and recoil corrections have a large effect on the angular distribution, making it isotropic at about 15 MeV and slightly forward at higher energies. We also show that the behavior of the cross section and the angular distribution can be well-understood analytically for Eν≲60E_\nu \lesssim 60 MeV by calculating to O(1/M){\cal O}(1/M), where MM is the nucleon mass. The correct angular distribution is useful for separating νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n events from other reactions and detector backgrounds, as well as for possible localization of the source (e.g., a supernova) direction. We comment on how similar corrections appear for the lepton angular distributions in the deuteron breakup reactions νˉe+d→e++n+n\bar{\nu}_e + d \to e^+ + n + n and νe+d→e−+p+p\nu_e + d \to e^- + p + p. Finally, in the reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n, the angular distribution of the outgoing neutrons is strongly forward-peaked, leading to a measurable separation in positron and neutron detection points, also potentially useful for rejecting backgrounds or locating the source direction.Comment: 10 pages, including 5 figure

    Bounds on the dipole moments of the tau-neutrino via the process e+e−→ννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma in a 331 model

    Full text link
    We obtain limits on the anomalous magnetic and electric dipole moments of the ντ\nu_{\tau} through the reaction e+e−→ννˉγe^{+}e^{-}\rightarrow \nu \bar \nu \gamma and in the framework of a 331 model. We consider initial-state radiation, and neglect WW and photon exchange diagrams. The results are based on the data reported by the L3 Collaboration at LEP, and compare favorably with the limits obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C. arXiv admin note: substantial text overlap with arXiv:hep-ph/060527

    Towards Practical Runtime Verification and Validation of Self-Adaptive Software Systems

    Get PDF
    International audienceSoftware validation and verification (V&V) ensures that software products satisfy user requirements and meet their expected quality attributes throughout their lifecycle. While high levels of adaptation and autonomy provide new ways for software systems to operate in highly dynamic environments, developing certifiable V&V methods for guaranteeing the achievement of self-adaptive software goals is one of the major challenges facing the entire research field. In this chapter we (i) analyze fundamental challenges and concerns for the development of V&V methods and techniques that provide certifiable trust in self-adaptive and self-managing systems; and (ii) present a proposal for including V&V operations explicitly in feedback loops for ensuring the achievement of software self-adaptation goals. Both of these contributions provide valuable starting points for V&V researchers to help advance this field

    Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke

    Get PDF
    In light of the limited repertoire of therapeutical options available for the treatment of ischaemic stroke, the identification of novel potential targets is vital; in this respect, the present study demonstrates that the adaptor protein p66Shc holds this potential as an adjunct therapy to thrombolysis. Post-ischaemic silencing of p66Shc protein yielded beneficial effects in a mouse model of I/R brain injury underlying an interesting translational perspective for this target protein. Further, in proof-of-principle clinical experiments using PBMs, we demonstrate that p66Shc gene expression is transiently increased and that its levels correlate to short-term outcome in ischaemic stroke patients. Although these latter experiments are not directly relevant to the experiments performed in mice and in human endothelial cells, they provide novel important information about p66Shc regulation in stroke patients and set the basis for further investigations aimed at assessing the potential for p66Shc to become a novel therapeutic target as an adjunct of thrombolysis for the management of acute ischaemic strok
    • …
    corecore