130 research outputs found

    Comparison of techniques used to count single-celled viable phytoplankton

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Applied Phycology 24 (2012): 751-758, doi:10.1007/s10811-011-9694-z.Four methods commonly used to count phytoplankton were evaluated based upon the precision of concentration estimates: Sedgewick Rafter and membrane filter direct counts, flow cytometry, and flow-based imaging cytometry (FlowCAM). Counting methods were all able to estimate the cell concentrations, categorize cells into size classes, and determine cell viability using fluorescent probes. These criteria are essential to determine whether discharged ballast water complies with international standards that limit the concentration of viable planktonic organisms based on size class. Samples containing unknown concentrations of live and UV-inactivated phytoflagellates (Tetraselmis impellucida) were formulated to have low concentrations (<100 ml-1) of viable phytoplankton. All count methods used chlorophyll a fluorescence to detect cells and SYTOX fluorescence to detect non-viable cells. With the exception of one sample, the methods generated live and non-viable cell counts that were significantly different from each other, although estimates were generally within 100% of the ensemble mean of all subsamples from all methods. Overall, percent coefficient of variation (CV) among sample replicates was lowest in membrane filtration sample replicates, and CVs for all four counting methods were usually lower than 30% (although instances of ~60% were observed). Since all four methods were generally appropriate for monitoring discharged ballast water, ancillary considerations (e.g., ease of analysis, sample processing rate, sample size, etc.) become critical factors for choosing the optimal phytoplankton counting method.This study was supported by the U.S. Coast Guard Research and Development Center under contract HSCG32-07- X-R00018. Partial research support to DMA and DMK was provided through NSF International Contract 03/06/394, and Environmental Protection Agency Grant RD-83382801-0

    Human transformations of the Wadden Sea ecosystem through time: a synthesis

    Get PDF
    Todayrsquos Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the Wadden Sea. We then discuss the ecosystem and societal consequences of observed changes, and conclude with management implications. Human influences have intensified and multiplied over time. Large-scale habitat transformation over the last 1,000 years has eliminated diverse terrestrial, freshwater, brackish and marine habitats. Intensive exploitation of everything from oysters to whales has depleted most large predators and habitat-building species since medieval times. In the twentieth century, pollution, eutrophication, species invasions and, presumably, climate change have had marked impacts on the Wadden Sea flora and fauna. Yet habitat loss and overexploitation were the two main causes for the extinction or severe depletion of 144 species (~20% of total macrobiota). The loss of biodiversity, large predators, special habitats, filter and storage capacity, and degradation in water quality have led to a simplification and homogenisation of the food web structure and ecosystem functioning that has affected the Wadden Sea ecosystem and coastal societies alike. Recent conservation efforts have reversed some negative trends by enabling some birds and mammals to recover and by creating new economic options for society. The Wadden Sea history provides a unique long-term perspective on ecological change, new objectives for conservation, restoration and management, and an ecological baseline that allows us to envision a rich, productive and diverse Wadden Sea ecosystem and coastal society

    Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes

    Get PDF
    Genomic correlates of evolutionary adaptation to very low or very high optimal growth temperature (OGT) values have been the subject of many studies. Whereas these provided a protein-structural rationale of the activity and stability of globular proteins/enzymes, the point has been neglected that adaptation to extreme temperatures could also have resulted from an increased use of intrinsically disordered proteins (IDPs), which are resistant to these conditions in vitro. Contrary to these expectations, we found a conspicuously low level of structural disorder in bacteria of very high (and very low) OGT values. This paucity of disorder does not reflect phylogenetic relatedness, i.e. it is a result of genuine adaptation to extreme conditions. Because intrinsic disorder correlates with important regulatory functions, we asked how these bacteria could exist without IDPs by studying transcription factors, known to harbor a lot of function-related intrinsic disorder. Hyperthermophiles have much less transcription factors, which have reduced disorder compared to their mesophilic counterparts. On the other hand, we found by systematic categorization of proteins with long disordered regions that there are certain functions, such as translation and ribosome biogenesis that depend on structural disorder even in hyperthermophiles. In all, our observations suggest that adaptation to extreme conditions is achieved by a significant functional simplification, apparent at both the level of the genome and individual genes/proteins

    Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Get PDF
    BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons

    Fortnightly changes in water transport direction across the mouth of a narrow estuary

    Get PDF
    This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.info:eu-repo/semantics/publishedVersio

    Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea

    Get PDF
    Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400–800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea

    From DPSIR the DAPSI(W)R(M) Emerges… a Butterfly – ‘protecting the natural stuff and delivering the human stuff’

    Get PDF
    The complexity of interactions and feedbacks between human activities and ecosystems can make the analysis of such social-ecological systems intractable. In order to provide a common means to understand and analyse the links between social and ecological process within these systems, a range of analytical frameworks have been developed and adopted. Following decades of practical experience in implementation, the Driver Pressure State Impact Response (DPSIR) conceptual framework has been adapted and re-developed to become the D(A)PSI(W)R(M). This paper describes in detail the D(A)PSI(W)R(M) and its development from the original DPSIR conceptual frame. Despite its diverse application and demonstrated utility, a number of inherent shortcomings are identified. In particular the DPSIR model family tend to be best suited to individual environmental pressures and human activities and their resulting environmental problems, having a limited focus on the supply and demand of benefits from nature. We present a derived framework, the “Butterfly”, a more holistic approach designed to expand the concept. The “Butterfly” model, moves away from the centralised accounting framework approach while more-fully incorporating the complexity of social and ecological systems, and the supply and demand of ecosystem services, which are central to human-environment interactions

    A review on substances and processes relevant for optical remote sensing of extremely turbid marine areas, with a focus on the Wadden Sea

    Get PDF
    The interpretation of optical remote sensing data of estuaries and tidal flat areas is hampered by optical complexity and often extreme turbidity. Extremely high concentrations of suspended matter, chlorophyll and dissolved organic matter, local differences, seasonal and tidal variations and resuspension are important factors influencing the optical properties in such areas. This review gives an overview of the processes in estuaries and tidal flat areas and the implications of these for remote sensing in such areas, using the Wadden Sea as a case study area. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible. However, this requires sensors with a large ground resolution, algorithms tuned for high concentrations of various substances and the local specific optical properties of these substances, a simultaneous detection of water colour and land-water boundaries, a very short time lag between acquisition of remote sensing and in situ data used for validation and sufficient geophysical and ecological knowledge of the area. © 2010 The Author(s)
    corecore