174 research outputs found
An ultra-high gain and efficient amplifier based on Raman amplification in plasma
Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%
Evaluation of Lionex TB kits and mycobacterial antigens for IgG and IgA detection in cerebrospinal fluid from tuberculosis meningitis patients
To evaluate commercial Lionex TB together with four antigens of Mycobacterium tuberculosis (MPT-64, MT10.3, 16 kDa and 38 kDa) for IgG and IgA cerebrospinal fluid (CSF) detection in the diagnosis of tuberculosis meningitis (TBM) with CSF negative acid-fast bacilli staining, 19 cases of TBM, 64 cases of other infectious meningoencephalitis and 73 cases of other neurological disorders were tested by enzyme linked immunosorbent assay. IgA-MPT-64 and IgG Lionex showed the highest sensitivities, specificities, positive predictive value and negative predictive value (63.2%, 47.4%; 95%, 93.7%; 40%, 98% and 28.4%, 97.1%, respectively). However, while grey zone was 12.7% and 6%, respectively, lowering sensitivity but maintains high specificity (> 95%). High protein concentration in CSF was associated with antibody positivity CSF/HIV+ which did not influence the sensitivity of both tests. To our knowledge, this is the first description of IgA-MPT-64 and IgG Lionex antibodies in CSF-TBM and, although there is good specificity, adjustments are needed based on antigen composition to enhance sensitivity
DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines
<p>Abstract</p> <p>Background</p> <p>Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.</p> <p>Methods</p> <p>HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity<sup>® </sup>Pathway Analysis.</p> <p>Results</p> <p>Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.</p> <p>Conclusion</p> <p>This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.</p
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways
Identification of Serotype in Culture Negative Pneumococcal Meningitis Using Sequential Multiplex PCR: Implication for Surveillance and Vaccine Design
BACKGROUND: PCR-based serotyping of Streptococcus pneumoniae has been proposed as a simpler approach than conventional methods, but has not been applied to strains in Asia where serotypes are diverse and different from other part of the world. Furthermore, PCR has not been used to determine serotype distribution in culture-negative meningitis cases. METHODOLOGY: Thirty six serotype-specific primers, 7 newly designed and 29 previously published, were arranged in 7 multiplex PCR sets, each in new hierarchies designed for overall serotype distribution in Bangladesh, and specifically for meningitis and non-meningitis isolates. Culture-negative CSF specimens were then tested directly for serotype-specific sequences using the meningitis-specific set of primers. PCR-based serotyping of 367 strains of 56 known serotypes showed 100% concordance with quellung reaction test. The first 7 multiplex reactions revealed the serotype of 40% of all, and 31% and 48% non-meningitis and meningitis isolates, respectively. By redesigning the multiplex scheme specifically for non-meningitis or meningitis, the quellung reaction of 43% and 48% of respective isolates could be identified. Direct examination of 127 culture-negative CSF specimens, using the meningitis-specific set of primers, yielded serotype for 51 additional cases. CONCLUSIONS: This PCR approach, could improve ascertainment of pneumococcal serotype distributions, especially for meningitis in settings with high prior use of antibiotics
A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells
Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based “simulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations
- …