1,660 research outputs found

    An essential function for the ATR-Activation-Domain (AAD) of TopBP1 in mouse development and cellular senescence

    Get PDF
    ATR activation is dependent on temporal and spatial interactions with partner proteins. In the budding yeast model, three proteins – Dpb11TopBP1, Ddc1Rad9 and Dna2 - all interact with and activate Mec1ATR. Each contains an ATR activation domain (ADD) that interacts directly with the Mec1ATR:Ddc2ATRIP complex. Any of the Dpb11TopBP1, Ddc1Rad9 or Dna2 ADDs is sufficient to activate Mec1ATR in vitro. All three can also independently activate Mec1ATR in vivo: the checkpoint is lost only when all three AADs are absent. In metazoans, only TopBP1 has been identified as a direct ATR activator. Depletion-replacement approaches suggest the TopBP1-AAD is both sufficient and necessary for ATR activation. The physiological function of the TopBP1 AAD is, however, unknown. We created a knock-in point mutation (W1147R) that ablates mouse TopBP1-AAD function. TopBP1-W1147R is early embryonic lethal. To analyse TopBP1-W1147R cellular function in vivo, we silenced the wild type TopBP1 allele in heterozygous MEFs. AAD inactivation impaired cell proliferation, promoted premature senescence and compromised Chk1 signalling following UV irradiation. We also show enforced TopBP1 dimerization promotes ATR-dependent Chk1 phosphorylation. Our data suggest that, unlike the yeast models, the TopBP1-AAD is the major activator of ATR, sustaining cell proliferation and embryonic development

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Indigenous Grasses for Rehabilitating Degraded African Drylands

    Get PDF
    Drylands provide an important livelihood stream to its inhabitants across the globe through a range of products and ecosystem services. However, these fragile ecosystems are threatened and believed to experience various degrees of land degradation. Estimates of the landmass affected by land degradation in the global drylands range from 10% to 20%, a percentage that is increasing at an annual global rate of 12 million ha of soil lost from desertification and drought. African drylands are especially highly susceptible to severe degradation because of their poor soil structure aggravated by scarce vegetation cover. Causes of degradation in these environments are both natural and anthropogenic in nature. Change in vegetation cover, decline in soil fertility, biodiversity loss and soil erosion demonstrate degradation in African drylands. Grass reseeding using indigenous species is one of the promising sustainable land management strategies to combat degradation in the drylands. Reseeding programmes are aimed at improving vegetation cover and biomass, and they conserve the soil to an extent not possible by grazing and land management alone. Indigenous drought-tolerant grasses notably African foxtail grass (Cenchrus ciliaris), bush rye grass (Enteropogon macrostachyus) and Maasai lovegrass (Eragrostis superba) have produced promising rehabilitation outcomes. Previous studies in African drylands have demonstrated the potential of such indigenous forage grasses in improving both vegetation cover (plant frequency and densities, basal cover) and soil hydrological properties (increased infiltration capacity, reduced runoff and sediment production) as indicators of rehabilitation success. Despite their comparative and widespread success, natural and anthropogenic challenges persist. This makes reseeding programmes a risky and often expensive venture, especially for the resource-poor pastoral communities in African drylands. Despite the risks, grass reseeding using indigenous pastures remains a viable sustainable land management option to combat degradation in African drylands. However, to ensure its continued success in the long term, multifaceted approaches and strategies that will integrate land and water management and seed systems suitable for African drylands need to be developed, strengthened and promoted.Peer reviewe

    Loss of the laminin subunit alpha-3 induces cell invasion and macrophage infiltration in cutaneous squamous cell carcinoma

    Get PDF
    Background Cutaneous squamous cell carcinoma (cSCC) is a common cancer that invades the dermis through the basement membrane. The role of the basement membrane in poorly differentiated cSCC is not well understood.Objectives To study the effect that loss of the laminin subunit alpha-3 (alpha 3) chain from the tumour microenvironment has on tumour invasion and inflammatory cell recruitment.Methods We examined the role of the basement membrane proteins laminin subunits alpha 3, beta 3 and gamma 2 in SCC invasion and inflammatory cell recruitment using immunohistochemistry, short hairpin RNA knockdown, RNA-Seq, mouse xenograft models and patient tumour samples.Results Analysis of SCC tumours and cell lines using antibodies specific to laminin chains alpha 3, beta 3 and gamma 2 identified a link between poorly differentiated SCC and reduced expression of laminin alpha 3 but not the other laminin subunits investigated. Knockdown of laminin alpha 3 increased tumour invasion both in vitro and in vivo. Western blot and immunohistochemical staining identified increased phosphorylated myosin light chain with loss of laminin alpha 3. Inhibition of ROCK (rho-associated protein kinase) but not Rac1 significantly reduced the invasive potential of laminin alpha 3 knockdown cells. Knockdown of laminin subunits alpha 3 and gamma 2 increased monocyte recruitment to the tumour microenvironment. However, only the loss of laminin alpha 3 correlated with increased tumour-associated macrophages both in xenografted tumours and in patient tumour samples.Conclusions These data provide evidence that loss of the laminin alpha 3 chain in cSCC has an effect on both the epithelial and immune components of cSCC, resulting in an aggressive tumour microenvironment

    AFCo1, a meningococcal B-derived cochleate adjuvant, strongly enhances antibody and T-cell immunity against Plasmodium falciparum merozoite surface protein 4 and 5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whilst a large number of malaria antigens are being tested as candidate malaria vaccines, a major barrier to the development of an effective vaccine is the lack of a suitable human adjuvant capable of inducing a strong and long lasting immune response. In this study, the ability of AFCo1, a potent T and B cell adjuvant based on cochleate structures derived from meningococcal B outer membrane proteoliposomes (MBOMP), to boost the immune response against two <it>Plasmodium falciparum </it>antigens, merozoite surface protein 4 (MSP4) and 5 (MSP5), was evaluated.</p> <p>Methods</p> <p>Complete Freund's adjuvant (CFA), which is able to confer protection against malaria in animal MSP4/5 vaccine challenge models, was used as positive control adjuvant. MSP4 and 5-specific IgG, delayed-type hypersensitivity (DTH), T-cell proliferation, and cytokine production were evaluated in parallel in mice immunized three times intramuscularly with MSP4 or MSP5 incorporated into AFCo1, synthetic cochleate structures, CFA or phosphate buffered saline.</p> <p>Results</p> <p>AFCo1 significantly enhanced the IgG and T-cell response against MSP4 and MSP5, with a potency equivalent to CFA, with the response being characterized by both IgG1 and IgG2a isotypes, increased interferon gamma production and a strong DTH response, consistent with the ability of AFCo1 to induce Th1-like immune responses.</p> <p>Conclusion</p> <p>Given the proven safety of MBOMP, which is already in use in a licensed human vaccine, AFCo1 could assist the development of human malaria vaccines that require a potent and safe adjuvant.</p

    Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    Get PDF
    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent-consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet

    Optimization and validation of multi-coloured capillary electrophoresis for genotyping of Plasmodium falciparum merozoite surface proteins (msp1 and 2)

    Get PDF
    BACKGROUND: Genotyping of Plasmodium falciparum based on PCR amplification of the polymorphic genes encoding the merozoite surface proteins 1 and 2 (msp1 and msp2) is well established in the field of malaria research to determine the number and types of concurrent clones in an infection. Genotyping is regarded essential in anti-malarial drug trials to define treatment outcome, by distinguishing recrudescent parasites from new infections. Because of the limitations in specificity and resolution of gel electrophoresis used for fragment analysis in most genotyping assays it became necessary to improve the methodology. An alternative technique for fragment analysis is capillary electrophoresis (CE) performed using automated DNA sequencers. Here, one of the most widely-used protocols for genotyping of P. falciparum msp1 and msp2 has been adapted to the CE technique. The protocol and optimization process as well as the potentials and limitations of the technique in molecular epidemiology studies and anti-malarial drug trials are reported. METHODS: The original genotyping assay was adapted by fluorescent labeling of the msp1 and msp2 allelic type specific primers in the nested PCR and analysis of the final PCR products in a DNA sequencer. A substantial optimization of the fluorescent assay was performed. The CE method was validated using known mixtures of laboratory lines and field samples from Ghana and Tanzania, and compared to the original PCR assay with gel electrophoresis. RESULTS: The CE-based method showed high precision and reproducibility in determining fragment size (< 1 bp). More genotypes were detected in mixtures of laboratory lines and blood samples from malaria infected children, compared to gel electrophoresis. The capacity to distinguish recrudescent parasites from new infections in an anti-malarial drug trial was similar by both methods, resulting in the same outcome classification, however with more precise determination by CE. CONCLUSION: The improved resolution and reproducibility of CE in fragment sizing allows for comparison of alleles between separate runs and determination of allele frequencies in a population. The more detailed characterization of individual msp1 and msp2 genotypes may contribute to improved assessments in anti-malarial drug trials and to a further understanding of the molecular epidemiology of these polymorphic P. falciparum antigens

    Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology

    Get PDF
    Background: A series of amyloidogenic peptides based on the sequence KFFEAAAKKFFE template the silica precursor, tetraethyl orthosilicate to form silica-nanowires containing a cross-β peptide core. Results: Investigation of the stability of these fibres reveals that the silica layers protect the silica-nanowires allowing them to maintain their shape and physical and chemical properties after incubation with organic solvents such as 2-propanol, ethanol, and acetonitrile, as well as in a strong acidic solution at pH 1.5. Furthermore, these nanowires were thermally stable in an aqueous solution when heated up to 70 °C, and upon autoclaving. They also preserved their conformation following incubation up to 4 weeks under these harsh conditions, and showed exceptionally high physical stability up to 1000 °C after ageing for 12 months. We show that they maintain their β-sheet peptide core even after harsh treatment by confirming the β-sheet content using Fourier transform infrared spectra. The silica nanowires show significantly higher chemical and thermal stability compared to the unsiliconised fibrils. Conclusions: The notable chemical and thermal stability of these silica nanowires points to their potential for use in microelectromechanics processes or fabrication for nanotechnological devices

    Aseptic Meningitis in Children: Analysis of 506 Cases

    Get PDF
    BACKGROUND: Non-polio human enteroviruses are the leading cause of aseptic meningitis in children. The role of enterovirus PCR for diagnosis and management of aseptic meningitis has not been fully explored. METHODOLOGY/PRINCIPAL FINDINGS: A retrospective study was conducted to determine the epidemiological, clinical, and laboratory characteristics of aseptic meningitis and to evaluate the role of enterovirus PCR for the diagnosis and management of this clinical entity. The medical records of children who had as discharge diagnosis aseptic or viral meningitis were reviewed. A total of 506 children, median age 5 years, were identified. The annual incidence rate was estimated to be 17/100,000 children less than 14 years of age. Most of the cases occurred during summer (38%) and autumn (24%). The dominant clinical symptoms were fever (98%), headache (94%) and vomiting (67%). Neck stiffness was noted in 60%, and irritation in 46% of the patients. The median number of CSF cell count was 201/mm(3) with polymorphonuclear predominance (>50%) in 58.3% of the cases. Enterovirus RNA was detected in CSF in 47 of 96 (48.9%) children tested. Children with positive enterovirus PCR had shorter hospitalization stay as compared to children who had negative PCR or to children who were not tested (P = 0.01). There were no serious complications or deaths. CONCLUSIONS: Enteroviruses accounted for approximately one half of cases of aseptic meningitis. PCR may reduce the length of hospitalization and plays important role in the diagnosis and management of children with aseptic meningitis

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table
    corecore