2,973 research outputs found

    Summarizing First-Person Videos from Third Persons' Points of Views

    Full text link
    Video highlight or summarization is among interesting topics in computer vision, which benefits a variety of applications like viewing, searching, or storage. However, most existing studies rely on training data of third-person videos, which cannot easily generalize to highlight the first-person ones. With the goal of deriving an effective model to summarize first-person videos, we propose a novel deep neural network architecture for describing and discriminating vital spatiotemporal information across videos with different points of view. Our proposed model is realized in a semi-supervised setting, in which fully annotated third-person videos, unlabeled first-person videos, and a small number of annotated first-person ones are presented during training. In our experiments, qualitative and quantitative evaluations on both benchmarks and our collected first-person video datasets are presented.Comment: 16+10 pages, ECCV 201

    Two Simple W' Models for the Early LHC

    Full text link
    W' gauge bosons are good candidates for early LHC discovery. We define two reference models, one containing a W'_R and one containing a W'_L, which may serve as ``simplified models'' for presenting experimental results of W' searches at the LHC. We present the Tevatron bounds on each model and compute the constraints from precision electroweak observables. We find that indirect low-energy constraints on the W'_L are quite strong. However, for a W'_R coupling to right-handed fermions there exists a sizeable region in parameter space beyond the bounds from the Tevatron and low-energy precision measurements where even 50 inverse picobarns of integrated LHC luminosity are sufficient to discover the W'_R. The most promising final states are two leptons and two jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a collimated object consisting of a hard lepton and two jets arising from the decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde

    Color & Weak triplet scalars, the dimuon asymmetry in BsB_s decay, the top forward-backward asymmetry, and the CDF dijet excess

    Full text link
    The new physics required to explain the anomalies recently reported by the D0 and CDF collaborations, namely the top forward-backward asymmetry (FBA), the like-sign dimuon charge asymmetry in semileptonic b decay, and the CDF dijet excess, has to feature an amount of flavor symmetry in order to satisfy the severe constrains arising from flavor violation. In this paper we show that, once baryon number conservation is imposed, color & weak triplet scalars with hypercharge Y=1/3Y=1/3 can feature the required flavor structure as a consequence of standard model gauge invariance. The color & weak triplet model can simultaneously explain the top FBA and the dimuon charge asymmetry or the dimuon charge asymmetry and the CDF dijet excess. However, the CDF dijet excess appears to be incompatible with the top FBA in the minimal framework. Our model for the dimuon asymmetry predicts the observed pattern hdhsh_d\ll h_s in the region of parameter space required to explain the top FBA, whereas our model for the CDF dijet anomaly is characterized by the absence of beyond the SM b-quark jets in the excess region. Compatibility of the color & weak triplet with the electroweak constraints is also discussed. We show that a Higgs boson mass exceeding the LEP bound is typically favored in this scenario, and that both Higgs production and decay can be significantly altered by the triplet. The most promising collider signature is found if the splitting among the components of the triplet is of weak scale magnitude.Comment: references added, published versio

    Top quark tensor couplings

    Get PDF
    We compute the real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbWtbW vertex in the Standard Model (SM). For both tensorial couplings we find that the real part of the electroweak SM correction is close to 10% of the leading contribution given by the QCD gluon exchange. We also find that the electroweak real and imaginary parts for the anomalous right coupling are almost of the same order of magnitude. The one loop SM prediction for the real part of the left coupling is close to the 3σ\sigma discovery limit derived from bsγb\rightarrow s \gamma. Besides, taking into account that the predictions of new physics interactions are also at the level of a few percents when compared with the one loop QCD gluon exchange, these electroweak corrections should be taken into account in order to disentangle new physics effects from the standard ones. These anomalous tensorial couplings of the top quark will be investigated at the LHC in the near future where sensitivity to these contributions may be achieved.Comment: 16 pages, 2 figure

    Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry

    Get PDF
    We derive generic predictions at hadron colliders from the large forward-backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron t \bar t data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet bounds and UV completions; matches published versio

    Fermion Masses in Emergent Electroweak Symmetry Breaking

    Full text link
    We consider the generation of fermion masses in an emergent model of electroweak symmetry breaking with composite W,ZW,Z gauge bosons. A universal bulk fermion profile in a warped extra dimension is used for all fermion flavors. Electroweak symmetry is broken at the UV (or Planck) scale where boundary mass terms are added to generate the fermion flavor structure. This leads to flavor-dependent nonuniversality in the gauge couplings. The effects are suppressed for the light fermion generations but are enhanced for the top quark where the ZttˉZt{\bar t} and WtbˉWt{\bar b} couplings can deviate at the 102010-20% level in the minimal setup. By the AdS/CFT correspondence our model implies that electroweak symmetry is not a fundamental gauge symmetry. Instead the Standard Model with massive fermions and W,ZW,Z gauge bosons is an effective chiral Lagrangian for some underlying confining strong dynamics at the TeV scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE

    EWPD Constraints on Flavor Symmetric Vector Fields

    Get PDF
    Electroweak precision data constraints on flavor symmetric vector fields are determined. The flavor multiplets of spin one that we examine are the complete set of fields that couple to quark bi-linears at tree level while not initially breaking the quark global flavor symmetry group. Flavor safe vector masses proximate to, and in some cases below, the electroweak symmetry breaking scale are found to be allowed. Many of these fields provide a flavor safe mechanism to explain the t tbar forward backward anomaly, and can simultaneously significantly raise the allowed values of the Standard Model Higgs mass consistent with electroweak precision data.Comment: Matches version published in JHE

    Early (and Later) LHC Search Strategies for Broad Dimuon Resonances

    Get PDF
    Resonance searches generally focus on narrow states that would produce a sharp peak rising over background. Early LHC running will, however, be sensitive primarily to broad resonances. In this paper we demonstrate that statistical methods should suffice to find broad resonances and distinguish them from both background and contact interactions over a large range of previously unexplored parameter space. We furthermore introduce an angular measure we call ellipticity, which measures how forward (or backward) the muon is in eta, and allows for discrimination between models with different parity violation early in the LHC running. We contrast this with existing angular observables and demonstrate that ellipticity is superior for discrimination based on parity violation, while others are better at spin determination.Comment: 31 pages, 19 figures. References added, minor modifications made to section

    Bounds and Decays of New Heavy Vector-like Top Partners

    Get PDF
    We study the phenomenology of new heavy vector-like fermions that couple to the third generation quarks via Yukawa interactions, covering all the allowed representations under the standard model gauge groups. We first review tree and loop level bounds on these states. We then discuss tree level decays and loop-induced decays to photon or gluon plus top. The main decays at tree level are to W b and/or Z and Higgs plus top via the new Yukawa couplings. The radiative loop decays turn out to be quite close to the naive estimate: in all cases, in the allowed perturbative parameter space, the branching ratios are mildly sensitive on the new Yukawa couplings and small. We therefore conclude that the new states can be observed at the LHC and that the tree level decays can allow to distinguish the different representations. Moreover, the observation of the radiative decays at the LHC would suggest a large Yukawa coupling in the non-perturbative regime.Comment: 32 pages, 2 tables, 10 figure

    Constraints for the nuclear parton distributions from Z and W production at the LHC

    Full text link
    The LHC is foreseen to finally bring also the nuclear collisions to the TeV scale thereby providing new possibilities for physics studies, in particular related to the electro-weak sector of the Standard Model. We study here the Z and W production in proton-lead and lead-lead collisions at the LHC, concentrating on the prospects of testing the factorization and constraining the nuclear modifications of the parton distribution functions (PDFs). Especially, we find that the rapidity asymmetries in proton-nucleus collisions, arising from the differences in the PDFs between the colliding objects, provide a decisive advantage in comparison to the rapidity-symmetric nucleus-nucleus case. We comment on how such studies will help to improve our knowledge of the nuclear PDFs.Comment: The version accepted for publication in JHEP. New figures has been added, and we also discuss the single charged lepton productio
    corecore