Resonance searches generally focus on narrow states that would produce a
sharp peak rising over background. Early LHC running will, however, be
sensitive primarily to broad resonances. In this paper we demonstrate that
statistical methods should suffice to find broad resonances and distinguish
them from both background and contact interactions over a large range of
previously unexplored parameter space. We furthermore introduce an angular
measure we call ellipticity, which measures how forward (or backward) the muon
is in eta, and allows for discrimination between models with different parity
violation early in the LHC running. We contrast this with existing angular
observables and demonstrate that ellipticity is superior for discrimination
based on parity violation, while others are better at spin determination.Comment: 31 pages, 19 figures. References added, minor modifications made to
section