326 research outputs found
Normally preordered spaces and utilities
In applications it is useful to know whether a topological preordered space
is normally preordered. It is proved that every -space equipped with
a closed preorder is a normally preordered space. Furthermore, it is proved
that second countable regularly preordered spaces are perfectly normally
preordered and admit a countable utility representation.Comment: 17 pages, 1 figure. v2 contains a second proof to the main theorem
with respect to the published version. The last section of v1 is not present
in v2. It will be included in a different wor
Guest charges in an electrolyte: renormalized charge, long- and short-distance behavior of the electric potential and density profile
We complement a recent exact study by L. Samaj on the properties of a guest
charge immersed in a two-dimensional electrolyte with charges . In
particular, we are interested in the behavior of the density profiles and
electric potential created by the charge and the electrolyte, and in the
determination of the renormalized charge which is obtained from the
long-distance asymptotics of the electric potential. In Samaj's previous work,
exact results for arbitrary coulombic coupling were obtained for a
system where all the charges are points, provided and .
Here, we first focus on the mean field situation which we believe describes
correctly the limit but large. In this limit we can
study the case when the guest charge is a hard disk and its charge is above the
collapse value . We compare our results for the renormalized charge
with the exact predictions and we test on a solid ground some conjectures of
the previous study. Our study shows that the exact formulas obtained by Samaj
for the renormalized charge are not valid for , contrary to a
hypothesis put forward by Samaj. We also determine the short-distance
asymptotics of the density profiles of the coions and counterions near the
guest charge, for arbitrary coulombic coupling. We show that the coion density
profile exhibit a change of behavior if the guest charge becomes large enough
(). This is interpreted as a first step of the counterion
condensation (for large coulombic coupling), the second step taking place at
the usual Manning--Oosawa threshold
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
Gender differences in predictors of colorectal cancer screening uptake: A national cross sectional study based on the health belief model
10.1186/1471-2458-13-677BMC Public Health131
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Immobile indices and CQ-free optimality criteria for linear copositive programming problems
We consider problems of linear copositive programming where feasible sets consist of vectors
for which the quadratic forms induced by the corresponding linear matrix combinations
are nonnegative over the nonnegative orthant. Given a linear copositive problem, we define
immobile indices of its constraints and a normalized immobile index set. We prove that the
normalized immobile index set is either empty or can be represented as a union of a finite
number of convex closed bounded polyhedra. We show that the study of the structure of
this set and the connected properties of the feasible set permits to obtain new optimality
criteria for copositive problems. These criteria do not require the fulfillment of any additional
conditions (constraint qualifications or other). An illustrative example shows that the
optimality conditions formulated in the paper permit to detect the optimality of feasible
solutions for which the known sufficient optimality conditions are not able to do this. We
apply the approach based on the notion of immobile indices to obtain new formulations of
regularized primal and dual problems which are explicit and guarantee strong duality.publishe
The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria
Backgroud: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. Methods/Principal Findings: A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. Conclusions/Significance: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
VapC Toxins from Mycobacterium tuberculosis Are Ribonucleases that Differentially Inhibit Growth and Are Neutralized by Cognate VapB Antitoxins
The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as ‘non-toxic’. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of ‘non-toxic’ VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617 – VapC proteins with similarity to Rv0549c and Rv3320c, respectively – these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism
- …