63 research outputs found

    Antioxidant Activity and Hydroxyl Radical Induced DNA Damage Protection Effect of Aqueous Extract of Curcuma amada ROXB

    Get PDF
    ABSTRACT Mango ginger (Curcuma amada Roxb.) has been extensively used in South India to make pickles. The present study was aimed at determining the antioxidant activity and DNA protecting activity of aqueous extract of C.amada. The antioxidant activity of the aqueous extract of C.amada was determined by using its Iron chelating capacity and Hydroxyl radical scavenging assay. The DNA damage protection potential was also determined using Hydrogen peroxide (H 2 O 2 ) induced damage on herring sperm DNA. Results revealed a strong antioxidant activity with IC 50 value of 297.3 µg/ml on iron chelating capacity and IC 50 value of 323.8 µg/ml on hydroxyl radical scavenging activity. The extract also showed a concentration dependent DNA damage protecting effect. These results clearly demonstrates the strong antioxidant and DNA damage protecting potential of C.amada aqueous extract and marks its use as a potential source of natural antioxidant

    DNA methylation levels are highly correlated between pooled samples and averaged values when analysed using the Infinium HumanMethylation450 BeadChip array.

    Get PDF
    BACKGROUND: DNA methylation is a heritable and stable epigenetic mark implicated in complex human traits. Epigenome-wide association studies (EWAS) using array-based technology are becoming widely used to identify differentially methylated sites associated with complex diseases. EWAS studies require large sample sizes to detect small effects, which increases project costs. In the present study we propose to pool DNA samples in methylation array studies as an affordable and accurate alternative to individual samples studies, in order to reduce economic costs or when low amounts of DNA are available. For this study, 20 individual DNA samples and 4 pooled DNA samples were analysed using the Illumina Infinium HumanMethylation450 BeadChip array to evaluate the efficiency of the pooling approach in EWAS studies. Statistical power calculations were also performed to discover the minimum sample size needed for the pooling strategy in EWAS. RESULTS: A total of 485,577 CpG sites across the whole genome were assessed. Comparison of methylation levels of all CpG sites between individual samples and their related pooled samples revealed highly significant correlations (rho > 0.99, p-val  0.98, p-val < 10(-16)). Also, it was calculated that n = 43 is the minimum sample size required to achieve a 95 % statistical power and a 10(-06) significance level in EWAS, when using a DNA pool strategy. CONCLUSIONS: DNA pooling strategies seems to accurately provide estimations of averaged DNA methylation state using array based EWAS studies. This type of approach can be applied to the assessment of disease phenotypes, reducing the amount of DNA required and the cost of large-scale epigenetic analyses

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Formulations of Plant Growth-Promoting Microbes for Field Applications

    Get PDF
    Development of a plant growth-promoting (PGP) microbe needs several steps starting with isolation of a pure culture, screening of its PGP or antagonistic traits by means of different efficacy bioassays performed in vitro, in vivo or in trials under greenhouse and/or field conditions. In order to maximize the potential of an efficient PGP microbe, it is essential to optimize mass multiplication protocols that promote product quality and quantity and a product formulation that enhances bioactivity, preserves shelf life and aids product delivery. Selection of formulation is very crucial as it can determine the success or failure of a PGP microbe. A good carrier material should be able to deliver the right number of viable cells in good physiological conditions, easy to use and economically affordable by the farmers. Several carrier materials have been used in formulation that include peat, talc, charcoal, cellulose powder, farm yard manure, vermicompost and compost, lignite, bagasse and press mud. Each formulation has its advantages and disadvantages but the peat based carrier material is widely used in different part of the world. This chapter gives a comprehensive analysis of different formulations and the quality of inoculants available in the market, with a case study conducted in five-states of India

    From Mendel’s discovery on pea to today’s plant genetics and breeding

    Get PDF
    In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner

    Plant growth promoting rhizobia: challenges and opportunities

    Get PDF

    Proteomics in India: the clinical aspect

    Full text link

    SOLVATION FREE ENERY OF THIENO [3, 2 - b] PYRIMIDINE ANALOGS COMPRISING INTERMOLECULAR SOLVATION AND INTRAMOLECULAR SELF-SOLVATION

    Get PDF
      Objective: The aim was to estimate the various physiochemical properties of a molecule and the de-solvation cost for its binding to macromolecular receptors, the solvation free energy is a fundamental thermodynamics that has to be used. Here, a new solvation free energy carried out through the improvement of the existing solute-solvent interaction model and test its applicability in estimating the solvation free energies of vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors are discussed.Methods: The molecular dynamics program GROMACS, which is designed for free energy calculations and bond simulations, has been used to understand the solvation free energies.Results: The estimates of the solvation free energies of VEGFR-2 inhibitor molecules showed a reasonable accuracy by combining the effects from the solvent exposed and self-solvation regions. This significant contribution of free energies is thus consistent with the stability of the inhibitors in the solvent.Conclusion: The estimated solvation free energies from the new model illustrated a good association with the solute-solvent interaction. The current solvation model is thus expected to be more useful in supporting the stability of the inhibitors within a solvent.Keywords: GROMACS, Solvation free energy, VEGFR-2.Â

    Synthesis and characterization of silver nanomaterial from aqueous extract of Commelina forskaolii and its potential antimicrobial activity against Gram negative pathogens

    No full text
    Aim: Green synthesis of silver nanoparticles from medicinal plants have been progressively acquiring attractiveness to the researchers due to its sustainable nature, nontoxic and economically beneficial. The present study was to synthesize silver nanoparticles (AgNPs) from aqueous extract of Commelina forskaolii Vahl and exhibit its potential antimicrobial and cytotoxic activity. Material and Methods: The whole plant of Commelina forskaolii was used to synthesize AgNPs. The synthesized AgNPs was then characterized by UV – visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The AgNps are widely tested for antibacterial, antifungal and cytotoxic property. Results: The phytochemical screening of the aqueous extract showed the presence of secondary metabolites such as alkaloids, flavonoids, tannins, phenols, saponins, steroids, glycosides and proteins. The UV – vis absorption spectrum exhibited key peaks at 425 nm. FTIR spectrum revealed that the biochemical compounds are responsible for the reduction and capping material of AgNPs. SEM analysis showed, the average size of synthesized AgNPs ranged from 18 to 27 nm. TEM micrographs revealed that the particle size was to be 30–40 nm. The AgNPs exhibited potential antimicrobial activity against bacterial species (Enterococcus fecalis, Pseudomonas aeruginosa) showed MIC at about 62.5 µg/ml and 125 µg/ml respectively and fungal species (Candida albicans and Aspergilus niger) 250 µg/ml and 31.2 µg/ml respectively. The synthesized AgNPs showed potential cytotoxic activity against human breast cancer cell line (MCF-7) with the IC50 value of 50.2 µg/ml. The present investigation concludes the effectiveness of confirmed AgNPs might be used in pharmacological field for the treatment of bacterial, fungal and breast cancer
    • …
    corecore