1,198 research outputs found
Seismic assessment of hollow core concrete bridge piers
Hollow core concrete bridge piers are traditionally believed to be vulnerable to seismic action. However, the seismic vulnerability of such piers has not been investigated fully. In this paper, an analytical model to assess seismic vulnerability of hollow core concrete bridge pier is developed. The model is validated with available experimental results. Code recommendations for hollow core bridge piers are evaluated. It is shown that confinement reinforcement requirements in the codes are sometimes highly conservative and sometimes non-conservative. However, the recently developed confinement reinforcement equations for solid bridge piers at Sherbrooke University can be applied for economic and safe design. It is demonstrated that hollow core bridge piers are not as vulnerable as it is traditionally believed. Such piers can attain expected ductility, if designed properly
A flow microdevice for studying the initiation and propagation of a single pit
International audienceA novel experimental setup in which a glass microcapillary can be precisely positioned close to a metallic electrode has been developed to locally inject aggressive solutions at will. It has been used for studying the pitting corrosion of a 316L stainless steel in 0.5 M H2SO4 medium. The amount of chloride ions released by the capillary could be controlled and the analysis of the corrosion products by scanning electron microscopy and energy dispersive X-ray spectroscopy showed there was no selective dissolution of the 316L stainless steel. This device was shown to be an efficient tool for understanding localized corrosion. (c) 2012 Elsevier Ltd. All rights reserved
Jurisprudencia Civil Cubana, 02
Case law digest, v. 2. Civil law cases – Actos Propios (cont.)https://ecollections.law.fiu.edu/diaz-cruz-index/1064/thumbnail.jp
Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant
Coherent elastic neutrino-nucleus scattering (CENS) offers a unique way
to study neutrino properties and to search for new physics beyond the Standard
Model. Nuclear reactors are promising sources to explore this process at low
energies since they deliver large fluxes of (anti-)neutrinos with typical
energies of a few MeV. In this paper, a new-generation experiment to study
CENS is described. The NUCLEUS experiment will use cryogenic detectors
which feature an unprecedentedly low energy threshold and a time response fast
enough to be operated in above-ground conditions. Both sensitivity to
low-energy nuclear recoils and a high event rate tolerance are stringent
requirements to measure CENS of reactor antineutrinos. A new experimental
site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in
France is described. The VNS is located between the two 4.25 GW
reactor cores and matches the requirements of NUCLEUS. First results of on-site
measurements of neutron and muon backgrounds, the expected dominant background
contributions, are given. In this paper a preliminary experimental setup with
dedicated active and passive background reduction techniques is presented.
Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence
with an active muon-veto at shallow overburden is studied. The paper concludes
with a sensitivity study pointing out the promising physics potential of
NUCLEUS at the Chooz nuclear power plant
Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling In Vivo.
In chronic infection and cancer, T cells acquire a dysfunctional state characterized by the expression of inhibitory receptors. In vitro studies implicated the phosphatase Shp-2 downstream of these receptors, including PD-1. However, whether Shp-2 is responsible in vivo for such dysfunctional responses remains elusive. To address this, we generated T cell-specific Shp-2-deficient mice. These mice did not show differences in controlling chronic viral infections. In this context, Shp-2-deleted CD8 <sup>+</sup> T lymphocytes expanded moderately better but were less polyfunctional than control cells. Mice with Shp-2-deficient T cells also showed no significant improvement in controlling immunogenic tumors and responded similarly to controls to α-PD-1 treatment. We therefore showed that Shp-2 is dispensable in T cells for globally establishing exhaustion and for PD-1 signaling in vivo. These results reveal the existence of redundant mechanisms downstream of inhibitory receptors and represent the foundation for defining these relevant molecular events
- …