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Abstract 

 

A novel experimental setup in which a glass microcapillary can be precisely positioned close 

to a metallic electrode has been developed to locally inject aggressive solutions at will. It has 

been used for studying the pitting corrosion of a 316L stainless steel in 0.5 M H2SO4 medium. 

The amount of chloride ions released by the capillary could be controlled and the analysis of 

the corrosion products by scanning electron microscopy and energy dispersive X-ray 

spectroscopy showed there was no selective dissolution of the 316L stainless steel. This 

device was shown to be an efficient tool for understanding localized corrosion.  
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1. Introduction 

 Pitting corrosion has been in the focus for many decades of research providing 

valuable information on the mechanisms, the shapes of growing pits, and the relationships 

linking various parameters such as temperature, pH and potential to the corrosion rate. Most 

of these researches were carried out directly in chloride ions containing solutions, giving rise 

to several pits on the metal surface. Research groups involved in stainless steel (SS) 

investigations distinguished three phases in the development of a pit, namely nucleation, 

metastable growth and stable growth. Most of the pits last no longer than a few seconds and 

never reach a stable phase [1-4]. Some authors have described the stable phase as a diffusion 

controlled dissolution process, totally independent of the polarization potential, which 

proceeds through the formation of a high electrical resistant, saturated metal salt film in the 

bottom of the pit [5-8]. The presence of the film decreases the dissolution rate, changing the 

rate limiting process from an activation controlled process at the metal-electrolyte interface to 

a diffusion controlled process in the electrolyte. In case of a partially covered or sufficiently 

deep pit, the salt film could withstand dissolution to keep the pit active [9, 10]. According to 

Pistorius and Burstein [11, 12], stable pits generated on 304 SS in 1 M NaCl + 0.1 M H2SO4 

(pH = 0.7) have a pit stability factor x i  (where x is the pit depth and i is the pit current 

density) of 3.2 ± 0.2 mA cm-1. Open hemispherical pits having generally an x i  factor lower 

than 3.2 mA cm-1 are prone to rapid repassivation.  

 One of the main drawbacks of the experimental approach described above is that data 

collected by means of global electrochemical techniques correspond to the overall surface of 

the sample rather than to the local behaviour of individual pits. Attempts to correlate the 

corrosion current to the evolution of a particular pit were limited by the complexity and 

variability of the collected data. Recently, focus has been laid on the generation of a single pit 

at a preselected site of the electrode surface in order to avoid the occurrence of random pits 
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anywhere on the electrode surface and to allow a single event to be observed from its birth to 

its death. For instance, Vuillemin et al. [13] used a microcapillary to inject 250 nL of an 

aggressive solution of HCl, NaCl or H2SO4 over a predefined single MnS inclusion on 316L 

SS. Subsequently, the scanning vibrating electrode technique (SVET) was used for 

monitoring the local current flow due to corrosion of the activated MnS inclusion. It was 

shown that a single pit could only be initiated using HCl, whereas H2SO4 partially dissolved 

the inclusion. Other groups have used a scanning electrochemical microscope (SECM) to 

initiate single pits either on iron [14-16] or on SS [17]. In that case, the SECM tip was used to 

release chloride ions close to the metallic substrate by reducing either trichloroacetic acid [16] 

or AgCl deposits on the tip [14, 15]. On iron, the formation of a local aggressive chemical 

environment after the chloride ions release leads to the initiation of a single pit that propagates 

differently, depending on the solution pH. In basic solutions, the pit seemed to last 

indefinitely whereas in sulfuric acid solutions, it remained active for a short period before the 

pitting current suddenly decreased, suggesting that chloride ions were consumed along with 

iron dissolution[15, 18]. On SS [17], the initiation of a single pit required a higher amount of 

chloride ions than for pure iron in 0.5 M H2SO4, especially at high noble potential in the 

passive domain where the passive layer is thicker. Whatever the substrate potential, all the 

single pits remained active only for few minutes. Sustaining the pit activity by adding chloride 

ions into the probe-substrate thin layer was technically unfeasible because of the limited 

amount of chloride ions available with an Ag/AgCl probe.  

 In this work, the Ag probe was substituted by a glass microcapillary, positioned close 

to the electrode surface, in which chloride ions were injected at will from a syringe pump. 

Maintaining the chloride ions supply makes the study more relevant to describe atmospheric 

corrosion where pollutants such as chlorides and SO2 ceaselessly cross the gas-to-liquid 

interface and reach the corroding metal. In addition, the precise positioning of the glass 
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capillary above the metal, which enables initiating the single pit systematically at the 

electrode center, is described.  

 

2. Experimental 

2.1 Instrumentation 

 The glass microcapillary positioning was performed using the SECM setup sketched 

in Fig. 1. It consisted in a lab-made potentiostat and a 3-axis positioning system (VP-25XA, 

Newport) driven by a 100 nm spatial-resolution motion encoder (ESP300, Newport). The 

entire setup was controlled by a software developed under Labview®. The precise positioning 

of the capillary was performed by measuring the electrolyte resistance, Re, between the 

substrate and the reference electrode (RE) [19, 20]. This technique was shown to be sensitive 

enough to monitor the position of an insulating material (a small glass sphere) in the close 

vicinity of the substrate [21]. Briefly, a function generator (TG550, TTi) was used to 

superimpose a sinusoidal voltage at high frequency (fHF = 100 kHz; peak-to-peak amplitude 

Vp-p of 10-50 mV) to the dc-potential of the substrate. The current flowing to the substrate was 

sent to a home-made analogue device that delivers a voltage signal, VRe, proportional to the 

amplitude of the ac-current and, therefore, to the reciprocal of the electrolyte resistance, 1/Re. 

Following the Re variation by this way allowed the capillary tip to be precisely positioned 

above the center of the disk substrate without adding any redox mediator in the electrode. 

This technique was already used in a previous work to position the SECM probe above the 

electrode center but in the present work the glass microcapillary was an insulator so that Re 

was measured between the substrate and the RE instead of between the SECM probe and the 

RE. 

2.2 Electrodes and solutions 



A flow microdevice for studying the initiation and the propagation of a single pit.   N. Aouina et al. - Rev. 1 

5 
 

 The electrochemical investigations were performed using a conventional three-

electrode electrochemical cell with a 316L SS disk of 0.2 cm2 surface area as working 

electrode. The nominal composition of the SS was obtained by averaging energy dispersive 

X-ray spectroscopy (EDAX) values measured at various locations: Fe (66.9 at.%), Cr (18.9 

at.%), Ni (11.5 at.%), Mo (1.8 at.%), and Si (0.9 at.%). The disk was ground with 1200, 2400, 

and 4000 SiC abrasive paper, and then cleaned with a mixture of water/ethanol in an 

ultrasonic bath for 5 min prior to be used as the substrate material. A 6 cm2 surface area 

platinum grid acted as the counter electrode. A Mercury Sulfate reference Electrode (MSE) 

saturated in potassium sulfate was used and all potentials were referred to this electrode. All 

experiments were performed in a 0.5 M H2SO4 solution. The input of the glass capillary was 

connected to a 100 L Hamilton® syringe filled with a 2 M NaCl + 0.5 M H2SO4 solution. A 

KD Scientific® syringe driver was used to gradually push the syringe piston with a release 

rate of 10 L/h. The glass capillary shown in the inset of Fig. 1 had a 100 m inner diameter 

and a 900 m outer diameter produced with a micropipette puller (Sutter P2000). Since the 

smaller the inner diameter of the tube, the greater the flux of injected solution, no soluble 

corrosion products could diffuse into the 100 m inner diameter capillary, as observed when 

testing capillaries with 250 m and 150 m inner diameters (not shown here). 

2.3 Physical characterization 

 All pits were characterized ex-situ with a Leica Stereoscan 440 scanning electron 

microscope (SEM) coupled to an EDAX analysis. The pit depth was measured using a 

differential focusing technique with an optical microscope. 

 

3. Results and discussion 

 In order to obtain passive films of same thickness for all samples, the native oxide 

layer was firstly reduced by applying a potential of -0.8 V/MSE for 60 s. Then, a passive layer 
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was formed in-situ by sweeping the electrode potential under quasi steady-state conditions (1 

mV s−1) from −0.8 V/MSE to 0 V/MSE. The latter potential was held during 30 min allowing 

further growth of the passive layer.  

 The capillary tip was positioned at a height h = 10 m above the center of the SS 

working electrode. Indeed, a preliminary set of experiments showed that when injecting the 

chloride ions solution at a rate of 10 L/h, generalized corrosion around the site was avoided 

when the vertical tip-to-substrate distance did not exceed 10 m. To position the capillary tip 

at such height above the center of the SS substrate, the approach developed by Bouazaze et al. 

[21] to measure the electrolyte resistance Re variation due to the presence of alumina spheres 

of 1 mm and 2 mm in diameter above or in contact with a 1 cm in diameter platinum disk 

electrode, was used. By moving the sphere laterally along the electrode diameter, the authors 

showed that Re reaches a maximum above the edge of the disk electrode because of the 

current discontinuity. Re also tends to a maximum when approaching the sphere vertically 

above the disk electrode center. Figure 2 shows the approach curve of the capillary tip using 

the VRe monitoring. The contact point between the capillary tip and the substrate is observed 

at z = 0 m, that is after a slight change in the slope of the approach curve (indicated by the 

arrow in Fig. 2). The shape of the curve is thoroughly discussed in [21]. Figure 3 presents the 

VRe variations during two successive scans of the capillary tip at h = 50 m along the x and y 

axes. From the minimum VRe values in the two scans, the capillary tip could be positioned 

above the substrate center with a good precision. With this technique, pit can nucleate beneath 

the capillary by breaking the passive layer. 

 Figure 4 shows a typical curve of the current variations of the SS electrode in a 0.5 M 

sulfuric solution during the initiation and the propagation of a single pit. At time t = 30 s 

chloride ions were released at a rate of 10 L/h. The curve can be divided into three distinct 

parts:  
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 (i) the induction phase between the chloride ions release to the onset of the pitting 

current during which the chloride ions worked their way through the passive layer to reach the 

metal surface. As noticed in our previous work, the electrode potential during the passive 

layer formation markedly affects the protectiveness of the passive layer [17]. The lower the 

potential; the easier the breakdown of the passive film and the shorter the induction period. As 

noted above, the passive film was formed in-situ by holding a potential of 0 V/MSE during 30 

min, leading to an induction period of 15 seconds. According to Haupt and Strehblow [22], 

the passive layer thickness in this case should be comprised between 1.0 and 1.5 nm. Higher 

potential values, giving rise to thicker hardly penetrable layers, were intentionally avoided in 

order to obtain a single pit at the center of the electrode, but also to shorten the induction 

phase and consequently make easier the correlation between the amounts of injected of 

chloride ions and dissolved SS. However,  

 (ii) the pit initiation phase in which the bare metal zone started to dissolve at a high 

rate. The dissolution current increased progressively during 45 min to reach a threshold 

marking the beginning of the last phase. 

 (iii) the pit propagation phase. The latter phase may last for long duration time (some 

experiments were performed for more than 5 hours) as long as chloride ions are being brought 

into the capillary-substrate thin layer. Of importance in the propagation phase is the steadiness 

of the corrosion current, offering the prospect of studying this phase by means of 

electrochemical impedance spectroscopy (EIS). 

 The as-obtained single pit shown in the inset of Fig. 4 was located expectedly beneath 

the capillary. It grew under the surface layer of the SS below a cover. Removing the cover 

revealed a nearly hemispherical pit. Over a period of 3 hours, the pit grew to 1.4 mm in 

diameter and 450 m in depth. Numerous researchers have already observed such perforated 

layer covering pits on SS [9, 10, 23-28]. Among them, Mankowski and Szklarska-
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Smialowska [23] noticed colored streams of the solution escaping from time to time the pits 

initiated on 316 Ti. A similar stream was observed in this study as the solution turned green in 

the vicinity of the pit because of the salt film output. When in-situ probed using microprobe 

X-ray fluorescence [5] and most recently by synchrotron X-ray diffraction [29], FeCl2 was 

found to be the main constituent of the salt film formed over dissolving 316L SS in acidic 

media, beside little nickel and chromium. In our experiment, a syringe was introduced inside 

the pit in order to collect the green salt solution. Subsequently, the withdrawn solution was 

dried and the as-obtained powder was analyzed by EDAX spectroscopy. The EDAX spectrum 

shows a composition of about 70 at.% of iron, 19 at.% of chromium, and 11 at.% of nickel, 

indicating that there was no selective dissolution of the 316L SS, in good agreement with a 

previous quantification of the elements involved in the dissolved corrosion products using 

inductively coupled plasma mass spectrometry [17]. 

 

4. Conclusion 

 A novel set-up suited to uniformly initiate a single pit with chloride ions was designed. 

All the as-obtained pits were observed to grow hemispherically under a metallic cover. The 

single pit dissolution current increased progressively to reach a threshold marking the 

beginning of a steady current phase that might be further studied by means of EIS. To date, 

the role of the Cl- ions in the solution remains not yet fully understood. Hence, monitoring the 

Cl- ions supply to a single active pit would contribute to shed some light on their role in the 

metal dissolution process. The results of our on-going work on this topic will be the topic of a 

detailed article. 
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Figure 1. Experimental setup used to generate and sustain the growth of a single pit on a 316 

L SS substrate. Inset: 100 m inner diameter and 900 m outer diameter glass capillary. 
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Figure 2. Probe approach curve with the electrolyte resistance technique. The probe was 

moved at a scan rate v = 10 m s-1, E316L = 0 V/MSE. 

 



A flow microdevice for studying the initiation and the propagation of a single pit.   N. Aouina et al. 

 

Figure 3. Electrolyte resistance scans over the 316 L stainless steel electrode. The tip was 

moved at a scan rate v = 10 m s-1, E316L = 0 V/MSE. Black line: along the x-axis (left and 

lower axes); green line: along the y-axis (right and upper axes). 
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Figure 4. Evolution of the current generated by a single pit on a 316L substrate in 0.5 M 

H2SO4. Tip-to-substrate distance z = 10 m, E316L = 0 V/MSE. Inset: SEM observation of the 

pit generated and sustained during 3 hours. The pit was uncovered prior to SEM observation. 

D =1.4 mm, h = 450 m.  


	Text V1-Rev1
	Fig V1-Rev1

