1,688 research outputs found

    On a class of polynomial Lagrangians

    Get PDF
    In the framework of finite order variational sequences a new class of Lagrangians arises, namely, \emph{special} Lagrangians. These Lagrangians are the horizontalization of forms on a jet space of lower order. We describe their properties together with properties of related objects, such as Poincar\'e--Cartan and Euler--Lagrange forms, momenta and momenta of generating forms, a new geometric object arising in variational sequences. Finally, we provide a simple but important example of special Lagrangian, namely the Hilbert--Einstein Lagrangian.Comment: LaTeX2e, amsmath, diagrams, hyperref; 15 page

    On the bi-Hamiltonian Geometry of WDVV Equations

    Full text link
    We consider the WDVV associativity equations in the four dimensional case. These nonlinear equations of third order can be written as a pair of six component commuting two-dimensional non-diagonalizable hydrodynamic type systems. We prove that these systems possess a compatible pair of local homogeneous Hamiltonian structures of Dubrovin--Novikov type (of first and third order, respectively).Comment: 21 pages, revised published version; exposition substantially improve

    Systems of conservation laws with third-order Hamiltonian structures

    Get PDF
    We investigate nn-component systems of conservation laws that possess third-order Hamiltonian structures of differential-geometric type. The classification of such systems is reduced to the projective classification of linear congruences of lines in Pn+2\mathbb{P}^{n+2} satisfying additional geometric constraints. Algebraically, the problem can be reformulated as follows: for a vector space WW of dimension n+2n+2, classify nn-tuples of skew-symmetric 2-forms AαΛ2(W)A^{\alpha} \in \Lambda^2(W) such that ϕβγAβAγ=0, \phi_{\beta \gamma}A^{\beta}\wedge A^{\gamma}=0, for some non-degenerate symmetric ϕ\phi.Comment: 31 page

    Tetrad gravity, electroweak geometry and conformal symmetry

    Full text link
    A partly original description of gauge fields and electroweak geometry is proposed. A discussion of the breaking of conformal symmetry and the nature of the dilaton in the proposed setting indicates that such questions cannot be definitely answered in the context of electroweak geometry.Comment: 21 pages - accepted by International Journal of Geometric Methods in Modern Physics - v2: some minor changes, mostly corrections of misprint

    On the Mathematical and Geometrical Structure of the Determining Equations for Shear Waves in Nonlinear Isotropic Incompressible Elastodynamics

    Full text link
    Using the theory of 1+11+1 hyperbolic systems we put in perspective the mathematical and geometrical structure of the celebrated circularly polarized waves solutions for isotropic hyperelastic materials determined by Carroll in Acta Mechanica 3 (1967) 167--181. We show that a natural generalization of this class of solutions yields an infinite family of \emph{linear} solutions for the equations of isotropic elastodynamics. Moreover, we determine a huge class of hyperbolic partial differential equations having the same property of the shear wave system. Restricting the attention to the usual first order asymptotic approximation of the equations determining transverse waves we provide the complete integration of this system using generalized symmetries.Comment: 19 page

    Lagrangian reductive structures on gauge-natural bundles

    Full text link
    A reductive structure is associated here with Lagrangian canonically defined conserved quantities on gauge-natural bundles. Parametrized transformations defined by the gauge-natural lift of infinitesimal principal automorphisms induce a variational sequence such that the generalized Jacobi morphism is naturally self-adjoint. As a consequence, its kernel defines a reductive split structure on the relevant underlying principal bundle.Comment: 11 pages, remarks and comments added, this version published in ROM
    corecore