411 research outputs found

    “Over-the-Hill” Yet Still Fighting Uphill Battles to Find Jobs: The Plight of Older Job Applicants Under the ADEA

    Get PDF
    This Note discusses the unresolved issue of whether the Age Discrimination in Employment Act (ADEA) protects older job applicants from disparate impact discrimination, arguing that they should, in fact, be covered. This Note starts with an examination of the disparate impact framework and how arbitrary employment qualifications can operate indirectly to restrict the employment of older workers. It then goes into a statutory analysis of the pertinent sections of the ADEA and considers several different statutory interpretation methods. This Note will argue that the interpretation of the statute should align with its underlying purpose, which is to prohibit employers from discriminating against older people and to help older workers who have been displaced from work to regain employment. This Note then summarizes recent case law interpreting the issue, discussing the most recent developments in differing circuits. Both the Seventh and Eleventh Circuits have now effectively held that older job applicants do not have an available disparate impact claim under the ADEA. This Note argues for a different interpretation of the ADEA that would afford older job applicants the same protections as other protected groups who face similar barriers in employment. This Note suggests several remedial measures that may address this problem for the aging workforce. These recommendations include that advocates bring cases that enable other circuits to weigh in on this issue and create a circuit split to bring it to the Supreme Court so that the highest court can clarify the ambiguous language of the ADEA. Alternatively, a congressional amendment to the ADEA to expressly include applicants in the language of the statute would eliminate any ambiguity with respect to discrimination against older applicants for employment

    From immigrants to emigrants: Salesian education and the failed integration of Italians in Egypt, 1937-1960

    Get PDF
    With Italy’s entry into the Second World War, Anglo-Egyptian authorities repatriated Italian diplomats from Egypt, arrested around 5,000 Italians, and sequestered both personal and business accounts. Italian institutions were indefinitely closed, including the Italian state schools. Hope for a future in Egypt among the roughly 60,000 Italian residents faded. The Salesian missionary schools, whose goal since the late nineteenth century had been to inculcate nationalist-religious sentiment in Italy’s emigrants, remained the only active Italian educational institution by claiming Vatican protection. As such, the missionary schools assumed a central role in the lives of many young Italians. After the war, these same young Italians began to depart Egypt en masse, in part driven by the possibilities opened up by their vocational training. Building on diplomatic, institutional and private archives, this article demonstrates how the Salesian missionary schools attempted and failed to integrate Italian immigrants into the Egyptian labour force through vocational training. This failure combined with socio-economic and geopolitical changes to propel Italian departures from Egypt, making emigrants out of immigrants

    Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease

    Get PDF
    Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer’s disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing

    Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of motor neurons in the cerebrospinal axis. Whether upper motor neuron hyperexcitability, which is a feature of ALS, provokes dysfunction of glutamate metabolism and degeneration of lower motor neurons via an anterograde process is undetermined. To examine whether early changes in upper motor neuron activity occur in association with glutamatergic alterations, we performed whole-cell patch-clamp recordings to analyze excitatory properties of Layer V cortical motor neurons and excitatory postsynaptic currents (EPSCs) in presymptomatic G93A mice modeling familial ALS (fALS). We found that G93A Layer V pyramidal neurons exhibited altered EPSC frequency and rheobase values indicative of their hyperexcitability status. Biocytin loading of these hyperexcitable neurons revealed an expansion of their basal dendrite arborization. Moreover, we detected increased expression levels of the vesicular glutamate transporter 2 in cortical Layer V of G93A mice. Altogether our data show that functional and structural neuronal alterations associate with abnormal glutamatergic activity in motor cortex of presymptomatic G93A mice. These abnormalities, expected to enhance glutamate release and to favor its accumulation in the motor cortex, provide strong support for the view that upper motor neurons are involved early on in the pathogenesis of ALS

    Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice

    Get PDF
    Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2−/−), the key enzyme in DHA synthesis. From our findings, Elovl2−/− mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1ÎČ, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2−/− mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system

    Control of mitochondrial superoxide production by reverse electron transport at complex I.

    Get PDF
    The generation of mitochondrial superoxide (O2̇̄) by reverse electron transport (RET) at complex I causes oxidative damage in pathologies such as ischemia reperfusion injury, but also provides the precursor to H2O2 production in physiological mitochondrial redox signaling. Here, we quantified the factors that determine mitochondrial O2̇̄ production by RET in isolated heart mitochondria. Measuring mitochondrial H2O2 production at a range of proton-motive force (Δp) values and for several coenzyme Q (CoQ) and NADH pool redox states obtained with the uncoupler p-trifluoromethoxyphenylhydrazone, we show that O2̇̄ production by RET responds to changes in O2 concentration, the magnitude of Δp, and the redox states of the CoQ and NADH pools. Moreover, we determined how expressing the alternative oxidase from the tunicate Ciona intestinalis to oxidize the CoQ pool affected RET-mediated O2̇̄ production at complex I, underscoring the importance of the CoQ pool for mitochondrial O2̇̄ production by RET. An analysis of O2̇̄ production at complex I as a function of the thermodynamic forces driving RET at complex I revealed that many molecules that affect mitochondrial reactive oxygen species production do so by altering the overall thermodynamic driving forces of RET, rather than by directly acting on complex I. These findings clarify the factors controlling RET-mediated mitochondrial O2̇̄ production in both pathological and physiological conditions. We conclude that O2̇̄ production by RET is highly responsive to small changes in Δp and the CoQ redox state, indicating that complex I RET represents a major mode of mitochondrial redox signaling

    Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of motor neurons in the cerebrospinal axis. Whether upper motor neuron hyperexcitability, which is a feature of ALS, provokes dysfunction of glutamate metabolism and degeneration of lower motor neurons via an anterograde process is undetermined. To examine whether early changes in upper motor neuron activity occur in association with glutamatergic alterations, we performed whole-cell patch-clamp recordings to analyze excitatory properties of Layer V cortical motor neurons and excitatory postsynaptic currents (EPSCs) in presymptomatic G93A mice modeling familial ALS (fALS). We found that G93A Layer V pyramidal neurons exhibited altered EPSC frequency and rheobase values indicative of their hyperexcitability status. Biocytin loading of these hyperexcitable neurons revealed an expansion of their basal dendrite arborization. Moreover, we detected increased expression levels of the vesicular glutamate transporter 2 in cortical Layer V of G93A mice. Altogether our data show that functional and structural neuronal alterations associate with abnormal glutamatergic activity in motor cortex of presymptomatic G93A mice. These abnormalities, expected to enhance glutamate release and to favor its accumulation in the motor cortex, provide strong support for the view that upper motor neurons are involved early on in the pathogenesis of ALS

    AAV-mediated liver-specific MPV17 expression restores mtdna levels and prevents diet-induced liver failure

    Get PDF
    Mutations in human MPV17 cause a hepatocerebral form of mitochondrial DNA depletion syndrome (MDS) hallmarked by early-onset liver failure, leading to premature death. Liver transplantation and frequent feeding using slow-release carbohydrates are the only available therapies, although surviving patients eventually develop slowly progressive peripheral and central neuropathy. The physiological role of Mpv17, including its functional link to mitochondrial DNA (mtDNA) maintenance, is still unclear. We show here that Mpv17 is part of a high molecular weight complex of unknown composition, which is essential for mtDNA maintenance in critical tissues, i.e. liver, of a Mpv17 knockout mouse model. On a standard diet, Mpv17(-/-) mouse shows hardly any symptom of liver dysfunction, but a ketogenic diet (KD) leads these animals to liver cirrhosis and failure. However, when expression of human MPV17 is carried out by adeno-associated virus (AAV)-mediated gene replacement, the Mpv17 knockout mice are able to reconstitute the Mpv17-containing supramolecular complex, restore liver mtDNA copy number and oxidative phosphorylation (OXPHOS) proficiency, and prevent liver failure induced by the KD. These results open new therapeutic perspectives for the treatment of MPV17-related liver-specific MDS
    • 

    corecore