225 research outputs found

    Individually Tailored Immunosuppression: Is There a Role for Biomarkers?

    Full text link

    Manuscript for Drug Metabolism and Disposition Title Developmental changes in hepatic OCT1 protein expression from neonates to children

    Get PDF
    Abstract Organic cation transporter 1 (OCT1) plays an important role in the disposition of clinicallyimportant drugs, and the capacity of OCT1 activity is presumed to be proportional to the protein expression level in organ tissues. Presently, knowledge of OCT1 protein expression in children is very limited, especially among neonates and small infants. Here, we report on the characterization of OCT1 protein expression in neonatal, infant and pediatric liver samples performed by Immunoblot analysis. OCT1 protein expression was detected in liver samples from neonates as early as postnatal day 1 -2. This youngest group showed significantly lower OCT1 expression normalized by GAPDH (0.03 ±0.02 arbitrary unit (AU), mean ± SD, N=7) compared to samples aged 3 -4 weeks (0.08 ±0.03 AU, N=5, **P< 0.01), 3 -6 months (0.23 ± 0.15 AU, N=7, **P< 0.01), 11 months -1 year (0.42 ± 0.32 AU, N=6, **P< 0.01), and 8 -12 years (1.00 ± 0.44 AU, N=7, **P< 0.01). These data demonstrate an age-dependent increase in OCT1 expression from birth up to 8-12 years of age, and the findings of this study contribute to the understanding of OCT1 functional capacity and their effect of the disposition of OCT1 substrates in neonates and small infants

    Alternate-Day Micafungin Antifungal Prophylaxis in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation: A Pharmacokinetic Study

    Get PDF
    Disseminated fungal infection is a major cause of morbidity and mortality in children undergoing hematopoietic stem cell transplantation (HSCT). Prophylaxis with amphotericin B can be limited by renal toxicity. Oral triazoles can be limited by poor absorption, large interindividual pharmacokinetic (PK) variability, and hepatic toxicity, leading to interruptions in therapy and breakthrough infections. Intravenous (i.v.) micafungin has potential advantages, because of its better safety profile, specifically in terms of hepatic and renal toxicity, and lack of drug-drug interactions with common medications used in the HSCT setting. We hypothesized that higher dose micafungin (3 mg/kg) every other day will provide drug exposure similar to standard dosing (1 mg/kg) given daily, and improve patient compliance in very young children in whom oral medications can be challenging, at reduced administration costs. Both animal and adult patient data support the use of this approach. Fifteen children (M/F = 11/4, aged ≀10 years; mean: 3.9 years, range: 0.6-10 years) with various hematologic, metabolic, and immune deficiency disorders undergoing HSCT received a single dose of micafungin (3 mg/kg) i.v. over 1 hour. Dose selection was based on published PK data in pediatric patients, and exploration of different dosing regimens using Monte Carlo PK/PD simulation. Blood samples were drawn around this dose and PK analysis was conducted using standard noncompartmental methods. Micafungin at 3 mg/kg dose was well tolerated in all patients. Measurable plasma concentrations were present in all cases at 48 hours. Half-life and clearance observed were comparable to previous pediatric PK data, with clearance being higher than adults as expected. Volume of distribution was higher in our patients compared to published pediatric data, likely because of a larger proportion of very young children in our study cohort. After correction for protein binding, concentrations at the end of the dosing interval during maintenance treatment remain above the minimum inhibitory concentration (MIC) of highly susceptible fungal pathogens. These data suggest that alternate day micafungin dosing, as described here, may provide an attractive alternative for antifungal prophylaxis in HSCT patients and merits further evaluation

    Leopard Panthera pardus density and survival in an ecosystem with depressed abundance of prey and dominant competitors

    Get PDF
    The leopard Panthera pardus is in range-wide decline, and many populations are highly threatened. Prey depletion is a major cause of global carnivore declines, but the response of leopard survival and density to this threat is unclear: by reducing the density of a dominant competitor (the lion Panthera leo) prey depletion could create both costs and benefits for subordinate competitors. We used capture-recapture models fitted to data from a 7-year camera-trap study in Kafue National Park, Zambia, to obtain baseline estimates of leopard population density and sex-specific apparent survival rates. Kafue is affected by prey depletion, and densities of large herbivores preferred by lions have declined more than the densities of smaller herbivores preferred by leopards. Lion density is consequently low. Estimates of leopard density were comparable to ecosystems with more intensive protection and favourable prey densities. However, our study site is located in an area with good ecological conditions and high levels of protection relative to other portions of the ecosystem, so extrapolating our estimates across the Park or into adjacent Game Management Areas would not be valid. Our results show that leopard density and survival within north-central Kafue remain good despite prey depletion, perhaps because (1) prey depletion has had weaker effects on preferred leopard prey compared to larger prey preferred by lions, and (2) the density of dominant competitors is consequently low. Our results show that the effects of prey depletion can be more complex than uniform decline of all large carnivore species, and warrant further investigation

    Population Pharmacokinetic Modeling of Total and Free Ceftriaxone in Critically Ill Children and Young Adults and Monte Carlo Simulations Support Twice Daily Dosing for Target Attainment

    Get PDF
    Critical illness, including sepsis, causes significant pathophysiologic changes that alter the pharmacokinetics (PK) of antibiotics. Ceftriaxone is one of the most prescribed antibiotics in patients admitted to the pediatric intensive care unit (PICU). We sought to develop population PK models of both total ceftriaxone and free ceftriaxone in children admitted to a single-center PICU using a scavenged opportunistic sampling approach. We tested if the presence of sepsis and phase of illness (before or after 48 h of antibiotic treatment) altered ceftriaxone PK parameters. We performed Monte Carlo simulations to evaluate whether dosing regimens commonly used in PICUs in the United States (50 mg/kg of body weight every 12 h versus 24 h) resulted in adequate antimicrobial coverage. We found that a two-compartment model best described both total and free ceftriaxone concentrations. For free concentrations, the population clearance value is 6.54 L/h/70 kg, central volume is 25.4 L/70 kg, and peripheral volume is 19.6 L/70 kg. For both models, we found that allometric weight scaling, postmenstrual age, creatinine clearance, and daily highest temperature had significant effects on clearance. The presence of sepsis or phase of illness did not have a significant effect on clearance or volume of distribution. Monte Carlo simulations demonstrated that to achieve free concentrations above 1 mu g/ml for 100% of the dosing intervals, a dosing regimen of 50 mg/kg every 12 h is recommended for most patients. A continuous infusion could be considered if the target is to maintain free concentrations four times above the MICs (4 mu g/ml)

    Medication administration errors for older people in long-term residential care

    Get PDF
    Background Older people in long-term residential care are at increased risk of medication errors. The purpose of this study was to evaluate a computerised barcode medication management system designed to improve drug administrations in residential and nursing homes, including comparison of error rates and staff awareness in both settings. Methods All medication administrations were recorded prospectively for 345 older residents in thirteen care homes during a 3-month period using the computerised system. Staff were surveyed to identify their awareness of administration errors prior to system introduction. Overall, 188,249 attempts to administer medication were analysed to determine the prevalence of potential medication administration errors (MAEs). Error classifications included attempts to administer medication at the wrong time, to the wrong person or discontinued medication. Analysis compared data at residential and nursing home level and care and nursing staff groups. Results Typically each resident was exposed to 206 medication administration episodes every month and received nine different drugs. Administration episodes were more numerous (p < 0.01) in nursing homes (226.7 per resident) than in residential homes (198.7). Prior to technology introduction, only 12% of staff administering drugs reported they were aware of administration errors being averted in their care home. Following technology introduction, 2,289 potential MAEs were recorded over three months. The most common MAE was attempting to give medication at the wrong time. On average each resident was exposed to 6.6 potential errors. In total, 90% of residents were exposed to at least one MAE with over half (52%) exposed to serious errors such as attempts to give medication to the wrong resident. MAEs rates were significantly lower (p < 0.01) in residential homes than nursing homes. The level of non-compliance with system alerts was low in both settings (0.075% of administrations) demonstrating virtually complete error avoidance. Conclusion Potentially inappropriate administration of medication is a serious problem in long-term residential care. A computerised barcode system can accurately and automatically detect inappropriate attempts to administer drugs to residents. This tool can reliably be used by care staff as well as nurses to improve quality of care and patient safety

    Global extent and drivers of mammal population declines in protected areas under illegal hunting pressure

    Get PDF
    Illegal hunting is a persistent problem in many protected areas, but an overview of the extent of this problem and its impact on wildlife is lacking. We reviewed 40 years (1980–2020) of global research to examine the spatial distribution of research and socio-ecological factors influencing population decline within protected areas under illegal hunting pressure. From 81 papers reporting 988 species/site combinations, 294 mammal species were reported to have been illegally hunted from 155 protected areas across 48 countries. Research in illegal hunting has increased substantially during the review period and showed biases towards strictly protected areas and the African continent. Population declines were most frequent in countries with a low human development index, particularly in strict protected areas and for species with a body mass over 100 kg. Our results provide evidence that illegal hunting is most likely to cause declines of large-bodied species in protected areas of resource-poor countries regardless of protected area conservation status. Given the growing pressures of illegal hunting, increased investments in people’s development and additional conservation efforts such as improving anti-poaching strategies and conservation resources in terms of improving funding and personnel directed at this problem are a growing priority

    Deprescribing interventions and their impact on medication adherence in community-dwelling older adults with polypharmacy: a systematic review

    Get PDF
    Background: Polypharmacy, and the associated adverse drug events such as non-adherence to prescriptions, is a common problem for elderly people living with multiple comorbidities. Deprescribing, i.e. the gradual withdrawal from medications with supervision by a healthcare professional, is regarded as a means of reducing adverse effects of multiple medications including non-adherence. This systematic review examines the evidence of deprescribing as an effective strategy for improving medication adherence amongst older, community dwelling adults. Methods: A mixed methods review was undertaken. Eight bibliographic database and two clinical trials registers were searched between May and December 2017. Results were double screened in accordance with pre-defined inclusion/exclusion criteria related to polypharmacy, deprescribing and adherence in older, community dwelling populations. The Mixed Methods Appraisal Tool (MMAT) was used for quality appraisal and an a priori data collection instrument was used. For the quantitative studies, a narrative synthesis approach was taken. The qualitative data was analysed using framework analysis. Findings were integrated using a mixed methods technique. The review was performed in accordance with the PRISMA reporting statement. Results: A total of 22 original studies were included, of which 12 were RCTs. Deprescribing with adherence as an outcome measure was identified in randomised controlled trials (RCTs), observational and cohort studies from 13 countries between 1996 and 2017. There were 17 pharmacy-led interventions; others were led by General Practitioners (GP) and nurses. Four studies demonstrated an overall reduction in medications of which all studies corresponded with improved adherence. A total of thirteen studies reported improved adherence of which 5 were RCTs. Adherence was reported as a secondary outcome in all but one study. Conclusions: There is insufficient evidence to show that deprescribing improves medication adherence. Only 13 studies (of 22) reported adherence of which only 5 were randomised controlled trials. Older people are particularly susceptible to non-adherence due to multi-morbidity associated with polypharmacy. Bio-psycho-social factors including health literacy and multi-disciplinary team interventions influence adherence. The authors recommend further study into the efficacy and outcomes of medicines management interventions. A consensus on priority outcome measurements for prescribed medications is indicated

    Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.

    Get PDF
    Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38
    • 

    corecore