80 research outputs found

    Characterization of Pinus nigra var. laricio Maire bark extracts at the analytical and pilot scale

    Get PDF
    Pinus nigra var. laricio bark and its hot-water extracts (HWE) obtained at an analytical and pilot plant scale have been characterized in terms of phenolic extractives, condensed tannins (CTs), carbohydrates and inorganic compounds. Analytical extractions with aqueous acetone were also performed for comparison with HWE. The bark contains 35.5 g kg−1 CT, and two-thirds of it could be extracted. Analytical HWE at 75°C led to a total yield of 56.4 g kg−1. The extracts are mainly composed of phenolic compounds (50.7%) and pectins (19.7%). CTs amount to 17.9% of the extracts and are procyanidins with a mean degree of polymerization (DP) of about 9. Non-tannin phenolic oligomers also occurred in the extracts, which could be identified by pyrolysis gas chromatography mass spectrometry (Py-GC/MS) as lignin fragments. Matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS) revealed that the CT is a flavanol derivative in methylated form. Further characterization and tailoring of the HWE properties is needed in the context of their specific application

    Aggregation behavior of 6-isocassine and N-methyl-6-isocassine: insights into the biological mode of action of lipid alkaloids.

    Get PDF
    The aggregation behavior of 6-isocassine and N-methyl-6-isocassine, two piperidin-3-ol alkaloids isolated respectively from the barks of Prosopis nigra and P. affinis, was investigated using a combination of NOE experiments and diffusion measurements in solvents of varying polarity and hydrogen bonding capacity. While the NOE enhancements for N-methyl-6-isocassine are positive, regardless of the solvent, those for 6-isocassine shift from negative to positive when going from chloroform- d to methanol- d4solution. In addition, despite the self-diffusion coefficients of both compounds being virtually identical in methanol- d4, N-methyl-6-isocassine diffuses nearly twice as fast as the non-methylated alkaloid in chloroform- d. The changes in rotational and translational dynamics observed between solvents for 6-isocassine suggest that the molecule forms dimeric head-to-head aggregates in non-polar aprotic environments, a behavior that could help explain the biological mode of action that has been proposed for this type of alkaloids

    GLC-MS profiling of non-polar extracts from Phlomis bucharica and P. salicifolia and their cytotoxicity

    Get PDF
    Phlomis species (Phlomis bucharica Regel and P. salicifolia Regel) have been traditionally used by Uzbek people as stimulant, tonic, diuretic, and in the treatment of ulcers, hemorrhoids, wounds and gynecological problems. In the present study, we characterized the chemical composition of non-polar extracts from P. bucharica and P. salicifolia by high resolution GLC-MS and evaluated their cytotoxicity. Concentrations of hexadecanoic acid in hexane and chloroform extracts were higher in P. bucharica than in P. salicifolia. 1,8- Cineol, camphor, borneol, α-terpinol, thymol, and isobornyl acetate were detected in P. bucharica but not in P. salicifolia. About 45 components were identified in P. bucharica and 40 in P. salicifolia. The chloroform extract from P. bucharica showed cytotoxicity in HeLa and HL-60 cells, with IC50 values of 26.07 and 29.42 Όg/ml, respectively

    Stinging Nettles as Potential Food Additive: Effect of Drying Processes on Quality Characteristics of Leaf Powders

    Get PDF
    Abstract: Stinging nettle (Urtica dioica L.) is a ubiquitous, multi-utility, and under-utilized crop with potential health benefits owing to its nutritional and bioactive components. The objective of the work is to produce powders by drying wild stinging nettle leaves as a storable, low-cost functional additive to be used in bakery and ready-to-cook products. Convective drying (CD) and freeze-drying (FD) were applied on unblanched (U) or blanched (B) leaves, which were then milled to nettle powders (NPs). The obtained NPs were evaluated for selected physicochemical (moisture, color), techno- functional (flow indices, hygroscopicity), and phytochemical (pigments, phenols) characteristics as well as mineral contents. Blanching improved mass transfer and reduced the oxidative degradation of pigments during drying, but it caused a loss of total phenols content, antioxidant activity, and potassium content. As for the drying method, CD resulted in better flow properties (i.e., Carr Index and Hausner Ratio), while FD retained better the color, pigments, magnesium content, phenolic, and antioxidant parameters. Overall, the evaluated processing methods resulted in different technological properties that can allow for better evaluation of NPs as a food additive or ingredient. Among the NPs, blanched and freeze-dried powders despite showing inferior technological properties can be recommended as more suitable ingredients targeted f or food enrichment owing to better retention of bio-active components

    Heat treatment effect on lignin and carbohydrates in corsican pine earlywood and latewood studied by py–GC–MS technique

    No full text
    Lignin-derived degradation products from non-treated (NT) and heat-treated (T) Corsican pine (Pinus nigra subsp. laricio) obtained by pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) were investigated, whereby the earlywood (EW) and latewood (LW) parts of the annual ring were considered separately. The data evaluation was done by principal component analysis (PCA) and the Kruskal–Wallis test. There are no differences in the pyrolysis products composition between EW and LW, but NT and T samples were discernible by PCA applied to Py–GC–MS data. Less phenols with longer chains (4-vinylguaiacol, and trans-isoeugenol) than those with shorter chains (guaiacol, 4-methylguaiacol) and an increase of anhydrosugar (AHS) were found among the pyrolysis products after heat treatment. These signs for autocondensation and side chain cleavages in the lignin during heat treatment were more evident in the EW than in the LW and for the crystallization of cellulose. A slight decrease of the carbohydrate/lignin ratio (C/L) after heat treatment indicates a greater degradation of carbohydrates compared to lignin. The relation of pyrolysis products of lignin and mechanical properties of wood was evaluated by regression analysis. An inverse correlation between short-chain phenols and MOE and a direct correlation between long-chain phenols and compression strength was found in case of NT wood, while a weak positive correlation could be observed between short-chain phenols and the density in T wood.3n

    Thermal behaviour of iminodiacetic, oxydiacetic and thiodiacetic acids

    No full text
    The thermal decomposition of iminodiacetic, oxydiacetic, and thiodiacetic acids in helium atmosphere has been studied by means of thermogravimetry (TG), differential thermal analysis (DTA) and temperature-programmed pyrolysis directly coupled with mass spectrometry (TPPy-MS). Evolved gas analysis (EGA) profiles of iminodiacetic and oxydiacetic acids were obtained and compared with TG and DTA profiles. The decomposition of iminodiacetic acid forms water, CO, CO2, CH3CN, HCN and some hydrocarbons. After water evolution a cyclic anhydride is formed, as well as for oxydiacetic acid. Thiodiacetic acid vaporizes without decomposition
    • 

    corecore