79 research outputs found

    Evidence for an ecological cost of enhanced herbicide metabolism in Lolium rigidum

    Get PDF
    1. In some cases, evaluation of resource competitive interactions between herbicide resistant vs. susceptible weed ecotypes provides evidence for the expression of fitness costs associated with evolved herbicide-resistant gene traits. Such fitness costs impact in the ecology and evolutionary trajectory of resistant populations. 2. Neighbourhood experiments were performed to quantify competitive effects and responses between herbicide-susceptible (S) and resistant (R) Lolium rigidum individuals in which resistance is due to enhanced herbicide metabolism mediated by cytochrome P450. 3. In two-way competitive interactions between the S and R phenotypes, individuals of the S phenotype were the stronger effect competitors on both a per capita and per unit-size basis. The S phenotype also exhibited a stronger competitive response to wheat plants than did the R phenotype, displaying significantly greater (30%) above-ground biomass at the vegetative stage. When subjected to competition from wheat, R individuals produced significantly fewer reproductive tillers and allocated fewer resources to reproductive traits than individuals of the S phenotype. 4. The role of potential mechanisms underlying this resistance cost driven by traits such as plant size and tolerance to low resource availability, as well as the evolutionary implications of the results are discussed. 5. Synthesis. Evolved herbicide resistance due to enhanced-herbicide metabolism mediated by cytochrome-P450 in L. rigidum has been shown to be accompanied with an impaired ability to compete for resources. These results are consistent with the resource-based theory that predicts a negative trade-off between growth and plant defence

    Fitness costs associated with evolved herbicide resistance alleles in plants

    Get PDF
    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution

    Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum

    Get PDF
    4711-4718The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30 per cent), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed

    Herbicide-resistant weeds : from research and knowledge to future needs

    Get PDF
    Synthetic herbicides have been used globally to control weeds in major field crops. This has imposed a strong selection for any trait that enables plant populations to survive and reproduce in the presence of the herbicide. Herbicide resistance in weeds must be minimized because it is a major limiting factor to food security in global agriculture. This represents a huge challenge that will require great research efforts to develop control strategies as alternatives to the dominant and almost exclusive practice of weed control by herbicides. Weed scientists, plant ecologists and evolutionary biologists should join forces and work towards an improved and more integrated understanding of resistance across all scales. This approach will likely facilitate the design of innovative solutions to the global herbicide resistance challenge

    Expanding the eco-evolutionary context of herbicide resistance research

    Get PDF
    The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management
    • 

    corecore