5 research outputs found

    Association analysis of ACE and ACTN3 in Elite Caucasian and East Asian Swimmers

    Get PDF
    PURPOSE: Polymorphic variation in the angiotensin-converting enzyme (ACE) and alpha-actinin-3 (ACTN3) genes has been reported to be associated with endurance and/or power-related human performance. Our aim was to investigate whether polymorphisms in ACE and ACTN3 are associated with elite swimmer status in Caucasian and East Asian populations. METHODS: ACE I/D and ACTN3 R577X genotyping was carried out for 200 elite Caucasian swimmers from European, Commonwealth, Russian and American cohorts (short and middle distance, SMD ≤ 400 m, n = 130; long distance, LD greater than 400 m, n = 70) and 326 elite Japanese and Taiwanese swimmers (short distance, SD ≤ 100 m, n = 166; middle distance, MD: 200 - 400 m, n = 160). Genetic associations were evaluated by logistic regression and other tests accommodating multiple testing adjustment. RESULTS: ACE I/D was associated with swimmer status in Caucasians, with the D-allele being overrepresented in SMD swimmers under both additive and I-allele dominant models (permutation test p = 0.003 and p = 0.0005, respectively). ACE I/D was also associated with swimmer status in East Asians. In this group, however, the I-allele was overrepresented in the SD swimmer group (permutation test p = 0.041 and p = 0.0098 under the additive and the D-allele-dominant models, respectively). ACTN3 R577X was not significantly associated with swimmer status in either Caucasians or East Asians. CONCLUSIONS: ACE I/D associations were observed in these elite swimmer cohorts, with different risk alleles responsible for the associations in swimmers of different ethnicities. The functional ACTN3 R577X polymorphism did not show any significant association with elite swimmer status, despite numerous previous reports of associations with 'power/sprint' performance in other sports.Additional co-authors: Jason Gulbin, Viktor A. Rogozkin, Ildus I. Ahmetov, Nan Yang, Kathryn N. North, Saraslanidis Ploutarhos, Hugh E. Montgomery, Mark E.S. Bailey, and Yannis P. Pitsiladi

    Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes.

    No full text
    Vascular endothelial growth factor receptor 2 (VEGFR2) is essential to induce the full spectrum of VEGF angiogenic responses to aerobic training. In the present study, we examined the impact of the functional His472Gln polymorphism of the VEGFR2 gene on elite athlete status, endurance performance and muscle fibre type composition. Four hundred and seventy-one Russian athletes were prospectively stratified into four groups according to event duration, distance and type of activity, covering a spectrum from the more endurance-oriented to the more power-oriented. VEGFR2 genotype and allele frequencies were compared to 603 controls. To examine the association between VEGFR2 genotype and fibre type composition, vastus lateralis muscle biopsies were obtained from 45 physically active healthy men and 23 all-round speed skaters. In addition, 76 competitive rowers performed incremental endurance exercise to allow analysis of genotype associations with exercise responses. We found that the frequency of the VEGFR2 472Gln allele was significantly higher in endurance-oriented athletes compared to controls (36.8 vs. 27.4%, P = 0.0006). Relative VO(2max) was significantly greater in the VEGFR2 472Gln allele carriers compared with the His/His homozygotes of the sub-elite female rower group only. Genotype-specific differences were found for the proportion of slow-twitch fibres in both athletes and controls, which was approximately 10.1 and approximately 7.4% higher in the His/Gln and Gln/Gln genotypes than in the His/His genotype group, respectively. In conclusion, we have shown for the first time that variation in the VEGFR2 gene is associated with elite athlete status, endurance performance of female rowers and muscle fibre type composition

    The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes.

    No full text
    Endurance performance is a complex phenotype subject to the influence of both environmental and genetic factors. Although the last decade has seen a variety of specific genetic factors proposed, many in metabolic pathways, each is likely to make a limited contribution to an 'elite' phenotype: it seems more likely that such status depends on the simultaneous presence of multiple such variants. The aim of the study was to investigate individually and in combination the association of common metabolic gene polymorphisms with endurance athlete status, the proportion of slow-twitch muscle fibers and maximal oxygen consumption. A total of 1,423 Russian athletes and 1,132 controls were genotyped for 15 gene polymorphisms, of which most were previously reported to be associated with athlete status or related intermediate phenotypes. Muscle fiber composition of m. vastus lateralis in 45 healthy men was determined by immunohistochemistry. Maximal oxygen consumption of 50 male rowers of national competitive standard was determined during an incremental test to exhaustion on a rowing ergometer. Ten 'endurance alleles' (NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 promoter 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T and VEGFA rs2010963 C) were first identified showing discrete associations with elite endurance athlete status. Next, to assess the combined impact of all 10 gene polymorphisms, all athletes were classified according to the number of 'endurance' alleles they possessed. The proportion of subjects with a high (>/=9) number of 'endurance' alleles was greater in the best endurance athletes compared with controls (85.7 vs. 37.8%, P = 7.6 x 10(-6)). The number of 'endurance' alleles was shown to be positively correlated (r = 0.50; P = 4.0 x 10(-4)) with the proportion of fatigue-resistant slow-twitch fibers, and with maximal oxygen consumption (r = 0.46; P = 7.0 x 10(-4)). These data suggest that the likelihood of becoming an elite endurance athlete depends on the carriage of a high number of endurance-related alleles
    corecore