386 research outputs found

    Geometric phases in quantum control disturbed by classical stochastic processes

    Full text link
    We describe the geometric (Berry) phases arising when some quantum systems are driven by control classical parameters but also by outer classical stochastic processes (as for example classical noises). The total geometric phase is then divided into an usual geometric phase associated with the control parameters and a second geometric phase associated with the stochastic processes. The geometric structure in which these geometric phases take place is a composite bundle (and not an usual principal bundle), which is explicitely built in this paper. We explain why the composite bundle structure is the more natural framework to study this problem. Finally we treat a very simple example of a two level atom driven by a phase modulated laser field with a phase instability described by a gaussian white noise. In particular we compute the average geometric phase issued from the noise

    Photon mediated interaction between distant quantum dot circuits

    Full text link
    Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum conductors. Here, we use such an architecture to couple two quantum dot circuits . Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons

    Nilpotency in type A cyclotomic quotients

    Get PDF
    We prove a conjecture made by Brundan and Kleshchev on the nilpotency degree of cyclotomic quotients of rings that categorify one-half of quantum sl(k).Comment: 19 pages, 39 eps files. v3 simplifies antigravity moves and corrects typo

    A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    Get PDF
    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work

    Coherent coupling of a single spin to microwave cavity photons

    Full text link
    Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin-valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the MHz range at the single spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60ns. We thereby demonstrate a mesoscopic device suitable for non-destructive spin read-out and distant spin coupling.Comment: minor differences with published versio

    Uniform generation in trace monoids

    Full text link
    We consider the problem of random uniform generation of traces (the elements of a free partially commutative monoid) in light of the uniform measure on the boundary at infinity of the associated monoid. We obtain a product decomposition of the uniform measure at infinity if the trace monoid has several irreducible components-a case where other notions such as Parry measures, are not defined. Random generation algorithms are then examined.Comment: Full version of the paper in MFCS 2015 with the same titl

    Statistics of reduced words in locally free and braid groups: Abstract studies and application to ballistic growth model

    Full text link
    We study numerically and analytically the average length of reduced (primitive) words in so-called locally free and braid groups. We consider the situations when the letters in the initial words are drawn either without or with correlations. In the latter case we show that the average length of the reduced word can be increased or lowered depending on the type of correlation. The ideas developed are used for analytical computation of the average number of peaks of the surface appearing in some specific ballistic growth modelComment: 29 pages, LaTeX, 7 separated Postscript figures (available on request), submitted to J. Phys. (A): Math. Ge

    Integrability of graph combinatorics via random walks and heaps of dimers

    Full text link
    We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also involving suitable combinations of random walk generating functions. The proof of their conservation, i.e. their eventual independence on the geodesic distance, relies on the connection between random walks and heaps of dimers. The values of the conserved quantities are identified with generating functions for graphs with fixed numbers of external legs. Alternative equivalent choices for the set of conserved quantities are also discussed and some applications are presented.Comment: 38 pages, 15 figures, uses epsf, lanlmac and hyperbasic

    Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs

    Full text link
    We define a function by means of the minimum weight flow on a planar graph and prove that this function solves the ultradiscrete Toda molecule equation, its B\"acklund transformation and the two dimensional Toda molecule equation. The method we employ in the proof can be considered as fundamental to the integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v
    • …
    corecore