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Abstract We prove a conjecture made by Brundan and Kleshchev on the nilpotency
degree of cyclotomic quotients of rings that categorify one-half of quantum sl(k).
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algebra · Anti-gravity

1 Introduction

Let Γ denote the quiver associated to a simply-laced Kac–Moody algebra g. Let Z[I ]
denote the free abelian group on the set of vertices I of Γ . There is a bilinear Cartan
form on Z[I ] given on the basis elements i, j ∈ I by

i · j =

⎧
⎪⎨

⎪⎩

2 if i = j

−1 if i and j are joined by an edge

0 otherwise

We sometimes write i j for i · j = −1.
For a Kac–Moody Lie algebra g associated to an arbitrary Cartan datum, a graded

algebra R was defined in [7, 9] and shown to categorify U−
q (g), the integral form of

the negative half of the quantum universal enveloping algebra. These algebras also ap-
pear in a categorification of the entire quantum group [8], and in the 2-representation
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theory of Kac–Moody algebras [11]. Given a field k, the k-algebra R is defined by
finite k-linear combinations of braid-like diagrams in the plane, where each strand is
colored by a vertex i ∈ I . Strands can intersect and can carry dots; however, triple
intersections are not allowed. Diagrams are considered up to planar isotopy that do
not change the combinatorial type of the diagram. We recall the local relations for
simply-laced Cartan datum:

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j

if i · j = 0

if i · j = −1

(1)

for i �= j (2)

(3)

(4)

unless i = k and i · j = −1 (5)

if i · j = −1 (6)
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Multiplication is given by concatenation of diagrams. For more details see [7, 9].
The results in this note do not depend on the ground field k; they remain valid
when considering the ring R defined as above with Z-linear combinations of dia-
grams.

For ν = ∑
i∈I νi · i ∈ N[I ] write Seq(ν) for the subset of Im consisting of those

sequences of vertices i = i1i2 · · · im where ik ∈ I and vertex i appears νi times. The
length m of the sequence is equal to |ν|. Define Supp(ν) := {i | νi �= 0}. The ring R

decomposes as

R =
⊕

ν∈N[I ]
R(ν) (7)

where R(ν) is the subring generated by diagrams that contain νi strands colored i

for each i ∈ Supp(ν). We write 1i for the diagram with only vertical lines and no
crossings, where the strands are colored by the sequence i. The element 1i is an
idempotent of the ring R(ν). The rings R(ν) decompose further as

R(ν) =
⊕

i,j∈Seq(ν)

jR(ν)i (8)

where jR(ν)i := 1jR(ν)1i is the abelian group of all linear combinations of dia-
grams with sequence i at the bottom and sequence j at the top modulo the above
relations.

Sometimes it is convenient to convert from graphical to algebraic notation. For a
sequence i = i1i2 . . . im ∈ Seq(ν) and 1 ≤ r ≤ m we denote

xr,i := (9)

and

δr,i := (10)

The symmetric group Sm, where m = |ν|, acts on Seq(ν) by permutations. The trans-
position sr = (r, r + 1) switches entries ir , ir+1 of i. Thus, δr,i ∈ sr (i)R(ν)i.

For Λ = ∑
i∈I λi · i ∈ N[I ] the level of Λ is �(Λ) = ∑

i∈I λi . Let JΛ be the ideal

of R(ν) generated by elements x
λi1
1,i over all sequences i = i1 . . . im ∈ Seq(ν). Define

the cyclotomic quotient of the ring R(ν) at weight Λ as the quotient

RΛ
ν := Rν/JΛ (11)
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In terms of the graphical calculus the cyclotomic quotient RΛ
ν is the quotient of R(ν)

by the ideal generated by

(12)

over all sequences i in Seq(ν). It was conjectured in [9] that RΛ
ν categorifies the in-

tegrable representations of Uq(g) of highest weight Λ. The quotients RΛ
ν are called

cyclotomic quotients because they should be the analogues of the Ariki–Koike cyclo-
tomic Hecke algebras for other types.

This conjecture has been proven by Kleshchev and Brundan in type A [2, 3]. They
construct an isomorphism

RΛ
ν HΛ

ν

∼

where HΛ
ν is a block of the cyclotomic affine Hecke algebra HΛ

m . Ariki’s categori-
fication theorem [1] gives an isomorphism between the integrable highest weight
representation V (Λ) for U(ŝle) and the Grothendieck ring

⊕
m K0(H

Λ
m ) of finitely

generated projective modules. The isomorphism RΛ
ν

∼= HΛ
ν induces a Z-grading on

blocks of cyclotomic Hecke algebras. Brundan and Kleshchev use this grading to
prove the cyclotomic quotient conjecture for type A. This can be viewed as a graded
version of Ariki’s categorification theorem. A generalization of this conjecture to any
simply-laced type should follow from the work of Varagnolo and Vasserot [13] and
the combinatorics of crystal graphs.

Brundan and Kleshchev’s Z-grading on blocks of cyclotomic Hecke algebras gives
rise to a new grading on blocks of the symmetric group, enabling the study of graded
representations of the symmetric group [3, 4] and the construction of graded Specht
modules [4]. We also remark that prior to Brundan and Kleshchev’s work, Brundan
and Stroppel [5] established the cyclotomic quotient conjecture for level two repre-
sentations at q = 1 in type A∞.

Even with Brundan and Kleshchev’s proof of the cyclotomic quotient conjecture
in type A, it is still difficult to construct an explicit basis for cyclotomic quotients
RΛ

ν . Brundan and Kleshchev’s proof of the cyclotomic quotient conjecture utilizes
the isomorphism RΛ

ν
∼= HΛ

ν . However, this isomorphism is rather sophisticated and
does not directly lead to an explicit homogeneous basis for RΛ

ν in type A. For ex-
ample, Brundan and Kleshchev conjecture [2, Conjecture 2.3] that for type A∞ the
nilpotency of the generator xr,i is less than or equal to the level �(Λ).

In this note we define an upper bound br = br(i), called the antigravity bound,
for the nilpotency of the generator xr,i in RΛ

ν . We prove by induction that x
br

r,i = 0.
Our upper bound implies Brundan and Kleshchev’s nilpotency conjecture since br is
always less than or equal to the level �(Λ). Methods used in our proof may be relevant
for determining the nilpotency degrees for generators xr,i in other types. Recently Hu
and Mathas [6] have defined a graded cellular basis for the algebras RΛ

ν in type A. We
hope that understanding these nilpotency degrees will be a step towards constructing
explicit homogeneous monomial bases for these quotients.
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Table 1 A summary of notations

Description Brundan–Kleshchev Khovanov–Lauda

Graph, vertex set Γ, I Same

Lattices indexed by I P := ⊕
i∈I ZΛi , Q := ⊕

i∈I Zαi Z[I ]
Positive root α ∈ Q+ ν = ∑

i∈I νi · i ∈ N[I ]
Set of sequences Iα :={i=(i1,...,id )|αi1

+···+αid
=α} Seq(ν)

Length of sequence

i = i1i2 · · · im
ht(α) = ∑

i∈I (Λi ,α) |ν| = ∑
i∈I νi

Idempotents e(i) 1i

Dot on rth strand

of sequence i

yr e(i) xr,i

Crossing of rth

and r + 1st strand

of sequence i

ψre(i) δr,i

Rings and quotients Rα , RΛ
α R(ν), R(ν,λ)

The bound is most naturally understood using the combinatorial device of ‘bead
and runner’ diagrams used by Kleshchev and Ram [10] in their study of homogeneous
representations of rings R(ν). Kleshchev and Ram give a way to turn a sequence
i ∈ Seq(ν) into a configuration of numbered beads on runners colored by the vertices
of Γ . The main idea of our proof is to study bead and runner diagrams in ‘antigravity’.

To prove the induction step we show that either the nilpotency of xm,i can be
determined from the nilpotency of some xm′,i′ where m′ < m, |i′| < |i|, and bm′(i′) =
bm(i), or the sequence i has a special form. Sequences i with this special form are
called stable antigravity sequences and they are characterized in terms of bead and
runner diagrams associated to the sequence i. For stable antigravity sequences we
prove directly that the antigravity bound holds.

For the readers convenience we include a table (Table 1) summarizing the notation
used by the second author in collaboration with Khovanov and the notation used by
Brundan and Kleshchev. In this note we write Λ = ∑

i λi · i ∈ N[I ] for a dominant
integral weight, and we write the corresponding cyclotomic quotient as RΛ

ν .

2 Quotients in type A∞

Consider the quiver Γ of type A∞, where we identify the vertex set I with Z:

Γ = −1 0 1 2 3 · · ·· · · (13)

Vertex i is connected by an edge to vertex j if and only if j = i ± 1.
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2.1 Bead and runner diagrams

To a sequence i = i1 . . . im and an elementary transposition sr in the symmetric group
Sm we can associate the crossing δr,i in R(ν). A transposition sr is called an admis-
sible transposition if the corresponding element δr,i in R(ν) has degree zero. This
happens when the crossing δr,i involves strands colored by vertices not connected by
an edge in Γ . For ν ∈ N[I ] the weight graph Gν has as its vertices all the sequences
i ∈ Seq(ν). Sequences i and j are connected by an edge in Gν if i = sr (j) for an
admissible transposition sr .

We recall the parametrization of the connected components of Gν due to
Kleshchev and Ram [10, Sect. 2.5]. The set I × R≥0 is called a Γ -abacus. For a
vertex i ∈ I , the subset {i} × R≥0 is called a runner of the Γ -abacus, or the run-
ner colored by the vertex i. We slide ‘beads’, whose shape depends on Γ , onto the
runners of the Γ -abacus and gravity pulls the beads down the runners creating a
bead and runner diagram. Below is an example for D5 of a Γ -abacus with 3 beads
on various runners. Bead and runner diagrams can be understood in terms of heaps
introduced by Viennot [12].

Fix ν = ∑
i∈I νi · i ∈ N[I ] with |ν| = m. A configuration λ of type ν is obtained

by placing m beads on the runners with νi beads placed on the runner i for each
i ∈ I . If λ is a configuration of type ν, then we write Supp(λ) := Supp(ν), which
can be thought of as those runners i with at least one bead on them. A λ-tableau
is a bijection T : {1,2, . . . ,m} → {beads of λ}. A bead is removable if it can be
slid off its runner without interfering with other beads. A standard λ-tableau is a
special numbering of the beads: the largest numbered bead is removable, after re-
moving this bead the next largest numbered bead is removable, and so on until all
the beads are removed. An example for Γ an infinite chain appears on the left side
of (14).

Given i = i1 . . . im ∈ Seq(ν) we define a standard λ-tableau T i by placing a bead
labeled 1 onto the runner colored i1, then a bead labeled 2 onto the runner colored
i2, and so on until the last bead labeled m is placed onto runner colored im. The
resulting configuration of beads on the abacus, disregarding the numbers labeling
the beads, is denoted by conf(i). Given a standard λ-tableau T we get a sequence
iT = i1 . . . im in Seq(ν), where ia ∈ I is the color of the runner that the ath bead
is on.
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Proposition 1 (Kleshchev–Ram [10], Proposition 2.4) Two sequences i and j in
Seq(ν) are in the same connected component of the weight graph Gν if and only
if conf(i) = conf(j). Moreover, the assignments i 
→ T i and T 
→ iT are mutually in-
verse bijections between the set of standard λ-tableau and the set of all sequences i
in Seq(ν) with conf(i) = λ.

2.2 Antigravity

Bead and runner diagrams in type A∞ are closely related to the ‘Russian’ notation
for Young diagrams. The advantage of ‘Russian’ notation is that it takes ‘gravity’ into
account—beads are pulled to the bottom of a bead and runner diagram. In construct-
ing our nilpotency bound ‘antigravity’ will play an equally important role.

To study bead and runner diagrams in antigravity we choose a bead on the diagram
and anchor it in place. Rather than beads sliding down the abacus via gravity, beads
not trapped below the anchored bead are pulled off the runners by antigravity. In the
example below, the box labeled by ‘13’ is the anchored bead.

(14)

Boxes labeled ‘4’, ‘7’, and ‘12’ have been slid off the abacus by antigravity. Boxes
labeled ‘3’, ‘5’, and ‘11’ are slid up the abacus towards the anchored bead.

An antigravity configuration a is a bead and runner diagram in antigravity for
some choice of anchored bead. We say that an antigravity configuration a is of type
ν = ∑

i νi · i if there are νi beads on runner i in antigravity. An antigravity config-
uration can be regarded as an ordinary configuration, also denoted a, by restoring
ordinary gravity so that the remaining beads slide down the abacus. Hence, for an
antigravity configuration a of type ν, write Supp(a) = {i | νi �= 0}. This is the same
as Supp(a), where a is regarded as an ordinary configuration.

Antigravity moves Given a configuration of beads on a bead and runner diagram,
considered in antigravity for some fixed bead, the following moves alter the antigrav-
ity configuration of the beads.
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(1) square move:

The shaded box indicates the anchor. This move removes the lower bead in the
square configuration and is only applied when the top box in the square is the
anchor.

(2) stack move:

The stack move is applicable only when there are no beads in between the two
stacked beads. In the diagram the top bead is destroyed without affecting other
beads. After applying this move, beads not held in place by the anchored bead
slide freely up the abacus in antigravity.

(3) L-move: the L-move destroys the lowest box in an L-like configuration:

After applying this move, beads slide freely up the abacus in antigravity.

A configuration of beads stable under antigravity and the antigravity moves is
called a stable antigravity configuration, or a stable configuration.

While square moves that do not involve the anchor are not directly reducible using
the antigravity moves, for any such square configuration to exist in an antigravity
configuration there must also be a square configuration that does involve the anchor.
After simplifying this anchor square move, an L-like configuration will be created.
Applying antigravity moves and iterating this process will then simplify the non-
anchor square move. It is easy to see that:

Proposition 2 For type A∞ with vertex set I identified with Z, a stable antigravity
configuration is any antigravity configuration with exactly one bead on the runner i

for each i in an interval [a, b] containing the anchored bead.
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Several examples are shown below where the anchored bead is shaded:

The antigravity configuration in the first example is supported on [−2,6], the second
on [−4,2], and the last configuration is supported on just a single vertex [3].

Definition 3 Given a sequence i = i1 . . . ir . . . im, anchor the bead corresponding to
ir in conf(i). Apply antigravity moves to the resulting configuration until the diagram
stabilizes. From the beads that remain we form the r-stable antigravity configuration
ar(i) of i, or r-stable configuration of i.

It is easy to see that Supp(ar (i)) is completely determined by the support of the
antigravity configuration of i with anchor ir , since after turning on antigravity all
antigravity moves preserve the support of the configuration. Thus, the antigravity
moves simply remove beads until there is exactly one bead on each runner in the
support, so that ar(i) is well defined and independent of the order in which antigravity
moves are applied.

A sequence i is called r-stable if the configuration of i in antigravity with anchored
bead ir is the same as ar(i).

Definition 4 Let Λ = ∑
i∈I λi · i ∈ N[I ] and i = i1 . . . im. For any 1 ≤ r ≤ m define

the r-antigravity bound of i as

br = br(i) :=
∑

j∈Supp(ar (i))

λj
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Example 1 For the sequence i = (0,1,−3,−4,−1,2,5,2,1,0,−2,2,−1), we com-
pute the 13-stable antigravity configuration a13(i) at i13 = −1 as follows:

The 13-stable configuration for i has Supp(a13(i)) = {−3,−2,−1,0,1,2}. In this
example we could have also performed the ‘stack move’ on boxes labeled ‘6’ and ‘8’,
then applied several other antigravity moves. The end result is the same. All beads
below the highest bead on each runner in Supp(a13(i)) are removed by the antigravity
moves. The 13-antigravity bound of i is b13 = ∑2

j=−3 λj .

Proposition 5 For i ∈ Seq(ν) let i′ denote the subsequence obtained from i by re-
moving those terms corresponding to beads that are pulled off the bead and runner
diagram in antigravity with anchor im. If j is any subsequence of i′ and ir ∈ j, then
ar(j) ⊂ am(i) and in particular br(j) ≤ bm(i).

Proof Recall that am(i) is determined by the support of conf(i) in antigravity with
anchor im. That is, Supp(am(i)) = Supp(conf(i′)), where i′ is as above. If j is any
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subsequence of i′ and ir ∈ j, then the support of the configuration conf(j) considered
in antigravity with anchor ir must be contained in Supp(conf(i)). Hence, ar(j) ⊂
am(i) and the result follows. �

Remark 6

– The antigravity bound only depends on the shape of a configuration λ, not on the
entries that appear in a given λ-tableau. In particular, if conf(i) = conf(j) for some
sequences i and j, then by Kleshchev and Ram’s characterization of configurations
(see Proposition 1) we must have j = s(i) for some permutation s = sj1 . . . sjk

with
each sja an admissible transposition. It is clear that the r-stable configuration and
r-antigravity bound for i are the same as the s(r)-stable configuration and s(r)-
antigravity bound for j.

– The r-stable antigravity sequence for i = i1 . . . ir . . . im does not depend on the
terms of i that occur after ir . In particular, all beads corresponding to terms in the
subsequence ir+1 . . . im are removed from the diagram when antigravity is turned
on. Hence, if i′ = i1 . . . ir , then the r-stable antigravity configurations for these two
sequences i and i′ are the same, ar(i) = ar(i′).

2.3 Local relations for cyclotomic quotients

The relations in R(ν) for identically colored strands imply

(15)

and for b > 0

(16)

Recall that is := ii . . . i where vertex i appears s times.

Proposition 7 Let i = i′is i′′ ∈ Seq(ν), s ≥ 1, with |i′| = r . If xa
r+1,i = 0, then

∑

�1+···+�s=a−(s−1)

x
�1
r+1,i · x�2

r+2,i · . . . · x�s

r+s,i = 0 (17)

Proof The proof is by induction on the length s of consecutive strands labeled i. The
base case is trivial. Assume the result holds up to length s, we will show it also holds
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for length s + 1. Working locally around the s + 1 consecutive strands labeled i

(4)= (18)

Fixing the value a − � := �1 + �2 + · · · + �s−1, there is a symmetric combination of
� dots on the last two strands, so we can write

(19)

Then (18) can be written as

for � = a − (�1 + · · · + �s−1). If we write �′
s = � + 1 and add terms for �′

s = 0, which
are zero by (1), then

=

and both terms on the right are zero by the induction hypothesis. �

The following Proposition appears in an algebraic form in the work of Brundan
and Kleshchev [2].
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Proposition 8 Consider the sequence i = i1i2 . . . im ∈ Seq(ν) in RΛ
ν . If im−1 = im,

then xb
m−1,i = 0 implies xb

m,i = 0.

Proof We work locally around the two identically colored strands. Using that b dots
on the (m − 1)st strand is zero we have for any a ≥ b

(20)

which implies

(21)
The claim follows since

(22)

�

2.4 Factoring sequences

Recall from [9] elements j1i in R(ν). They are represented by diagrams with the
fewest number of crossings that connect the sequence i to the sequence j. For exam-
ple,

In particular, identically colored strands do not intersect in j1i and i1i is just 1i.
Consider i ∈ Seq(ν) with i = i′i′′i′′′ and i′ ∈ Seq(ν′), i′′ ∈ Seq(ν′′), i′′′ ∈ Seq(ν′′′),

where ν = ν′ + ν′′ + ν′′′. Write Ri′,i′′,i′′′ for the image of R(ν′)1i′ ⊗ R(ν′′)1i′′ ⊗
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R(ν′′′)1i′′′ in R(ν) under the natural inclusion R(ν′) ⊗ R(ν′′) ⊗ R(ν′′′) −→ R(ν).

We say that the sequence i = i′ir i′′′ has an r-factorization through the sequence j if

1i = Ri′,ir ,i′′′(i1j)(j1i)Ri′,ir ,i′′′ (23)

More generally we say that i has an r-factorization through a finite collection of
sequences {ja}a , where some ja may be repeated, if

1i =
∑

a

Ri′,ir ,i′′′(i1ja )(ja 1i)Ri′,ir ,i′′′

Example 2 The sequence i has an r-factorization through sequence sr (i) for any ad-
missible transposition sr since

If s is a permutation that can be written as a product of admissible permutations and
j = s(i), then i has an r-factorization through j since all crossings in j1i and i1j are
colored by disconnected vertices, so that 1i = i1jj1i.

Example 3 The sequence iij has a 3-factorization through the sequences {ij i, ij i}
when i · j = −1. The factorization follows from (4) and (15) since

(24)

Expanding both terms using (1) for i · j = −1 gives

(25)

where the last two terms are zero by (1). Explicitly, the factorization is given by

1iij = δ1,iij (iij 1ij i )(ij i1iij )δ1,iij x1,iij + x2,iij δ1,iij (iij 1ij i )(ij i1iij )δ1,iij

The following somewhat complex example will be used in the proof of the main
theorem.
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Example 4 Let i = i′ir ir+1ir+2ir+3 . . . im with ir = ir+2, ir+1 ir ir+3,
ir+1 · ir+a = 0 for a ≥ 3, and ir · ir+b = 0 for b ≥ 4. Observe that

(6)
= (26)

The first term on the right-hand side can be rewritten as

and sliding the strand labeled ir+1 right, the right-hand side of (26) can be written as

(27)

so that i = i′ir ir+1ir i′′ has an m-factorization through sequences {j,k} where j =
i′ir+1ir i′′ir and k = i′ir i′′ir ir+1.

Our interest in r-factorizations is explained in the following Proposition:

Proposition 9 Consider the sequence i equipped with an r-factorization through
sequences {ja}a where ja = sa(i) for permutations sa in Sm. If xα

sa(r),j = 0 for all a,
then this implies xα

r,i = 0. Furthermore, when sa(r) < r for all a, it is enough to show
xα
s(r),j′a

= 0 for the truncated sequences j′a = j1 . . . jsa(r).
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Proof We prove the case when i has an r-factorization through j = s(i) for some
permutation s. The general case is a straight forward extension of this case. Using the
r-factorization and the fact the xr,i commutes with elements in Ri′,ir ,i′′ , we can write

xα
r,i = xα

r,i1i = xα
r,iRi′,ir ,i′′(i1j)(j1i)Ri′,ir ,i′′ = Ri′,ir ,i′′x

α
r,i(i1j)(j1i)Ri′,ir ,i′′

Sliding dots through the crossings in i1j using (2) shows that

xα
r,i = Ri′,ir ,i′′(i1j)x

α
s(r),j(j1i)Ri′,ir ,i′′ = 0

whenever xα
s(r),j = 0. The second claim in the proposition is clear since xα

s(r),j′a
= 0

implies xα
s(r),ja

= 0. �

Remark 10 The sequence i = i1 . . . im factors through the sequence sr (i) for any
admissible transposition. Likewise, sr (i) factors through i. Therefore, whenever
r < m − 1 then xb

m,i = 0 if and only if xb
m,sr (i)

= 0. In particular, xm,i and xm,j have
the same nilpotency degree for any j = j′im with conf(j) = conf(i).

2.5 Main results

Lemma 11 Let Λ = ∑
i∈I λi · i ∈ N[I ]. Consider i = i1 . . . im ∈ Seq(ν) with m-

stable configuration am(i) and m-antigravity bound bm. If i is an m-stable sequence,
so that conf(i) = am(i), then x

bm

m,i = 0 in RΛ
ν .

Proof The proof is by induction on the length |i| = m. The base case follows
from (12). Assume the result holds for all sequences of the above form with length
less than or equal to m − 1. For the induction step we show that x

bm

m,i = 0. We
may assume λi1 > 0 otherwise 1i = 0 and the result trivially follows. By Re-
mark 10 it suffices to choose a preferred representative for the configuration conf(i).
Choose the representative i = jj′im where j = (im − r, im − (r − 1), . . . , im − 1) and
j′ = (im + (m − r − 1), im + (m − r − 2), . . . , im + 1). It is possible that either j = ∅
or j′ = ∅. The idempotent 1i has the form

and

⎧
⎪⎪⎨

⎪⎪⎩

ia ib if b = a + 1 and a �= r

or a = r and b = m

ia · ib = 0 otherwise

(28)
First consider the case j′ = ∅ so that |j| = r = m − 1. The definition of j is such

that conf(j) = ar(j), so the induction hypothesis implies xδ
r,j = xδ

m−1,j = 0, where
δ = ∑

j∈Supp(conf(j)) λj . Since bm = ∑
j∈Supp(conf(jim)) λj we can write bm = λim + δ
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with δ > 0 since λi1 ≥ 1. Using (1) x
bm

m,i can be expressed as

(29)
The first term on the right-hand side is zero since bm − 1 = λim + (δ − 1) ≥ λim .
Repeating this argument δ times on the remaining term above we have

(30)

where the first term is zero since bm − δ = λim and the second term is zero by the
induction hypothesis.

It remains to prove the result for j′ �= ∅. In this case we may assume λi1 ≥ 1 and
λir+1 ≥ 1 (λi1 = λir+1 if j = ∅), otherwise using that ia · ir+1 = 0 for all a ≤ r

so that 1i = 0 in RΛ
ν by (12), in which case x

bm

m,i = 0. Since conf(jim) = ar+1(jim) and
conf(j′) = am−r−1(j′), the induction hypothesis implies that

xα
r+1,jim = x

β

m−r−1,j′ = 0, for α =
∑

j∈Supp(conf(jim))

λj , β =
∑

j∈Supp(conf(j′))
λj

This implies

(31)
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and using (1) repeatedly for the disconnected vertices that for b ≥ β

(32)

The assumption that λir+1 ≥ 1 implies β ≥ 1. Then

(33)

where we have used (1) and the conditions in (28). After sliding the bm − 1 dots next
to the strand labeled ir using (2), the first term on the right-hand side is zero by (31)
since bm − 1 = α + (β − 1) ≥ α. Iterating this argument β times,

where the first diagram is zero by (31) and the second term is zero by (32). �

Theorem 12 Let Λ = ∑
i∈I λi · i ∈ N[I ] and i = i1 . . . ir . . . im ∈ Seq(ν). Then

the nilpotency degree of xr,i in RΛ
ν is less than or equal to the r-antigravity
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bound

br =
∑

j∈Supp(ar (i))

λj

Proof The proof is by induction on the length |i| = m. The base case follows
from (12). Assume the result holds for all sequences of the above form with length
less than or equal to m − 1. We show that x

bm

m,i = 0. For the induction step we show
that one of the following must be true.

1. The sequence i is m-stable, that is, conf(i) = am(i).
2. The nilpotency of the sequence i is bound above by the nilpotency of a sequence

s(i) = j = j1 . . . jm for some permutation s ∈ Sm with s(m) < m. Furthermore, the
s(m)-antigravity bound for j is the same as the m-antigravity bound bm for i.

In the first case the theorem follows by Lemma 11, and in the second case the
theorem follows from the induction hypothesis applied to the truncated sequence
j′ = j1 . . . js(m).

Consider the sequence i = i1 . . . im in antigravity with anchored bead im. If any
beads are removed from the Γ -abacus in m-antigravity let the ia be the first bead
to be removed. This means that ia cannot be connected in Γ to any ia′ for a′ >

a, so that the sequence i has an m-factorization through the sequence s(i) = j :=
i1 . . . ia−1ia+1 . . . imia . It is clear that the s(m)-antigravity bound b for the truncated
sequence j′ = i1 . . . ia−1ia+1 . . . im is the same as the antigravity bound bm for i. The
induction hypothesis implies that xb

s(m),j′ = x
bm

s(m),j′ = 0, so x
bm

m,i = 0 by Proposition 9
since i has an m-factorization through j. Thus, it suffices to assume that all beads are
trapped below the anchored bead im in antigravity.

Consider the rightmost r such that ir . . . im−1im is not m-stable. The antigravity
configuration must contain one of the following unstable forms:

(34)

If the unstable configuration has the first form in (34), then if the top box is the anchor
Remark 10 implies it suffices to assume r = m − 1 for the first configuration. Propo-
sition 8 then implies that the nilpotency degree of the sequence xm,i is bound above
by the nilpotency degree of xm−1,j′ for the shorter sequence j′ given by truncating i
at the (m − 1)st term. Because sequences i and j′ are related by a stack antigravity
move their antigravity bounds are the same. Hence, the result follows by the induction
hypothesis.

If the unstable configuration has the first form in (34) and the top box is not the
anchor, then by Remark 10 it suffices to consider the representative of conf(i) where
the upper box corresponds to the (r + 1)st bead, that is, ir = ir+1 so that i has the
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form i = i′ir ir ir+2i′′ with ir ir+2. As in Example 3, we can write

Since ir is the first vertex where one of the configurations in (34) appears, we can
assume that ir is not connected to any of the vertices in i′′. Pulling the strand labeled
ir to the far right gives an m-factorization

(35)

of i through copies of the sequence s(i) := i′ir ir+2i′′ir where s(m) = m − 1.
Applying the induction hypothesis to the truncated sequence j′ := i′ir ir+2i′′ im-
plies xb

s(m),j′ = 0, where b is the s(m)-antigravity bound for the sequence j′. Since

xb
s(m),j′ = 0 implies that xb

s(m),j′ir = 0, the factorization of i through j′im implies

xb
m,i = 0. However, the sequence j′ is obtained from i by applying a stack antigravity

move. Therefore, the s(m)-antigravity bound b for the sequence j′ is the same as the
m-antigravity bound bm for the sequence i and x

bm

m,i = 0 as desired.
If the unstable configuration has the second or third form of (34), then by Re-

mark 10 it suffices to consider the representative of conf(i) of one of the two forms
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In either case, Example 4 gives an m-factorization of i = i′ir ir+1ir i′′ through se-
quences {j,k} where j = s(i) = i′ir+1ir i′′ir and k = s′(i) = i′ir i′′ir ir+1. By examining
the resulting configurations it is easy to see that the s(m)-antigravity bound b for j
is greater than or equal to the s′(m)-antigravity bound b′ for k. Hence, if we set j′ =
i′ir+1ir i′′ and k′ = i′ir i′′ then by the induction hypothesis both xb

s(m),j′ = xb
s′(m),k′ = 0,

implying xb
s(m),j = xb

s′(m),k = 0. But the sequence j is obtained from the sequence i by

applying an antigravity L-move. Therefore, b = bm and x
bm

m,i = 0 by Proposition 9.
If the unstable configuration has the last form in (34), then by Remark 10 it suffices

to consider the representative of conf(i) of the form

so that i = i′imim−2im−1im for some sequence i′. Working locally around these last
four strands, repeatedly apply (1) to slide all the dots from right to left, so that x

bm

m,i
can be rewritten as

(36)

Using (6), the first two terms above have (m−3)-factorizations through the sequences

j1 = i′im−2im−1imim, j2 = i′im−2imimim−1, j3 = i′imimim−2im−1

By Proposition 5 and the induction hypothesis, we have that x
bm

m−a,ja
= 0 for a ∈

{1,2,3} and that x
bm

m−3,i′im = 0. The first two terms in (36) are zero because they can
be written as a linear combination of terms that contain the local configuration

(37)
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and are therefore equal to zero by Proposition 7. The third term in (36) is zero since
we have shown x

bm

m−3,i′im = 0. Hence, all terms in (36) are zero showing that the

x
bm

m,i = 0.
Finally, if none of the unstable configurations in (34) occur, then the configuration

conf(i) is the same as am(i), so the result holds by Lemma 11. �

It is clear that the antigravity bound br for the nilpotency of xr,i in RΛ
ν is always

less than or equal to the level �(Λ). Therefore, we have the following Corollary to
Theorem 12.

Corollary 13 (Brundan–Kleshchev Conjecture) If � = �(Λ) is the level of Λ, then
x�
r,i = 0 in RΛ

ν for any sequence i ∈ Seq(ν) and any 1 ≤ r ≤ m.

Remark 14 In general the antigravity bound is not tight. For example, Proposition 7
shows that if conf(i) contains a sub-configuration of the form

then the idempotent 1i = 0 in RΛ
ν , so that xr,i = 0 for all r . More generally, if for any

term ir the configuration conf(i) has a local configuration of the form

then Proposition 7, together with Theorem 12, imply 1i = 0 in RΛ
ν . Furthermore, if

after applying antigravity moves to conf(i) a configuration of the above form appears,
then it is not hard to check that 1i = 0 in RΛ

ν .
We do not know of any sequences i where 1i �= 0 and the antigravity bound is not

tight.
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