821 research outputs found

    Quantum fluids in nanopores

    Full text link
    We describe calculations of the properties of quantum fluids inside nanotubes of various sizes. Very small radius (RR) pores confine the gases to a line, so that a one-dimensional (1D) approximation is applicable; the low temperature behavior of 1D 4^4He is discussed. Somewhat larger pores permit the particles to move off axis, resulting eventually in a transition to a cylindrical shell phase--a thin film near the tube wall; we explored this behavior for H2_2. At even larger R1R\sim 1 nm, both the shell phase and an axial phase are present. Results showing strong binding of cylindrical liquids 4^4He and 3^3He are discussed.Comment: 8 pages, 4 figures, uses ws-ijmpb, graphicx, xspace; minor revisions from version published in Proc. 13th Intl. Conference on Recent Progress in Many-Body Theories (QMBT13), Buenos Aires, 200

    Experiments on Quantum and Thermal Desorption from ^4He Films

    Get PDF
    Desorption of He atoms from thin films may be resolved experimentally into quantum and thermal components. We show that quantum desorption becomes the dominant part of the signal in submonolayer films. We also show that, when all effects of collisions between desorbed atoms are eliminated, quantum desorption is not focused normal to the surface of optically polished sapphire crystals

    Bioremediation. An overview.

    Get PDF
    Abstract: A brief outline of the development of bioremediation technologies is presented. The major features and limitations are discussed, and an overview of the current state of the art in field applications is sketched

    Master Equation for Hydrogen Recombination on Grain Surfaces

    Get PDF
    Recent experimental results on the formation of molecular hydrogen on astrophysically relevant surfaces under conditions similar to those encountered in the interstellar medium provided useful quantitative information about these processes. Rate equation analysis of experiments on olivine and amorphous carbon surfaces provided the activation energy barriers for the diffusion and desorption processes relevant to hydrogen recombination on these surfaces. However, the suitability of rate equations for the simulation of hydrogen recombination on interstellar grains, where there might be very few atoms on a grain at any given time, has been questioned. To resolve this problem, we introduce a master equation that takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. The hydrogen recombination rate on microscopic grains, as a function of grain size and temperature, is then calculated using the master equation. The results are compared to those obtained from the rate equations and the conditions under which the master equation is required are identified.Comment: Latex document. 14 pages of text. Four associated figs in in PS format on separate files that are "called-in" the LaTeX documen

    CYP2E1 autoantibodies in liver diseases

    Get PDF
    Autoimmune reactions involving cytochrome P4502E1 (CYP2E1) are a feature of idiosyncratic liver injury induced by halogenated hydrocarbons and isoniazid, but are also detectable in about one third of the patients with advanced alcoholic liver disease (ALD) and chronic hepatitis C (CHC). In these latter the presence of anti-CYP2E1 auto-antibodies is an independent predictor of extensive necro-inflammation and fibrosis and worsens the recurrence of hepatitis following liver transplantation, indicating that CYP2E1-directed autoimmunity can contribute to hepatic injury. The molecular characterization of the antigens recognized by anti-CYP2E1 auto-antibodies in ALD and CHC has shown that the targeted conformational epitopes are located in close proximity on the molecular surface. Furthermore, these epitopes can be recognized on CYP2E1 expressed on hepatocyte plasma membranes where they can trigger antibody-mediated cytotoxicity. This does not exclude that T cell-mediated responses against CYP2E1 might also be involved in causing hepatocyte damage. CYP2E1 structural modifications by reactive metabolites and molecular mimicry represent important factors in the breaking of self-tolerance against CYP2E1 in, respectively, ALD and CHC. However, genetic or acquired interferences with the mechanisms controlling the homeostasis of the immune system are also likely to contribute. More studies are needed to better characterize the impact of anti-CYP2E1 autoimmunity in liver diseases particularly in relation to the fact that common metabolic alterations such as obesity and diabetes stimulates hepatic CYP2E1 expression

    Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells

    Get PDF
    Background Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. Methodology/Principal Findings In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. Conclusions/Significance Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin\u27s role in tip growing plant cells

    Elaboration of a computer system for determining the energy of laser pulse

    Get PDF
    This work investigates the neutron-induced fission of U-234 and the fission-fragment properties for neutron energies between E-n = 0.2 and 5.0 MeV with a special highlight on the prominent vibrational resonance at E-n = 0.77 MeV. Angular, energy, and mass distributions were determined based on the double-energy technique by means of a twin Frisch-grid ionization chamber. The experimental data are parametrized in terms of fission modes based on the multimodal random neck-rupture model. The main results are a verified strong angular anisotropy and fluctuations in the energy release as a function of incident-neutron energy

    COMPETING MECHANISMS OF MOLECULAR HYDROGEN FORMATION IN CONDITIONS RELEVANT TO THE INTERSTELLAR MEDIUM

    No full text
    International audienceThe most efficient mechanism of the formation of molecular hydrogen in the current universe is by association of hydrogen atoms on the surface of interstellar dust grains. The details of the processes of its formation and release from the grain are of great importance in the physical and chemical evolution of the space environmentswhere it takes place. Themain puzzle is still the fate of the 4.5 eV released in H2 formation and whether it goes into internal energy (rovibrational excitation), translational kinetic energy, or heating of the grain. The modality of the release of this energy affects the dynamics of the ISM and its evolution toward star formation.We present results of the detection of the rovibrational states of the just-formed H2 as it leaves the surface of a silicate.We find that rovibrationally excited molecules are ejected into the gas phase immediately after formation over a much wider range of grain temperatures than anticipated. Our results can be explained by the presence of twomechanisms ofmolecule formation that operate in partially overlapping ranges of grain temperature. A preliminary analysis of the relative importance of these two mechanisms is given. These unexpected findings, which will be complemented with experiments on the influence of factors such as silicate morphology, should be of great interest to the astrophysics and astrochemistry communities
    corecore