14,519 research outputs found

    Optimal distillation of a GHZ state

    Get PDF
    We present the optimal local protocol to distill a Greenberger-Horne-Zeilinger (GHZ) state from a single copy of any pure state of three qubits.Comment: RevTex, 4 pages, 2 figures. Published version, some references adde

    Interaction cost of non-local gates

    Get PDF
    We introduce the interaction cost of a non-local gate as the minimal time of interaction required to perform the gate when assisting the process with fast local unitaries. This cost, of interest both in the areas of quantum control and quantum information, depends on the specific interaction, and allows to compare in an operationally meaningful manner any two non-local gates. In the case of a two-qubit system, an analytical expression for the interaction cost of any unitary operation given any coupling Hamiltonian is obtained. One gate may be more time-consuming than another for any possible interaction. This defines a partial order structure in the set of non-local gates, that compares their degree of non-locality. We analytically characterize this partial order in a region of the set of two-qubit gates.Comment: revtex, 4 pages, no pictures, typos corrected, small changes in nomenclatur

    Three qubits can be entangled in two inequivalent ways

    Get PDF
    Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communcication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the GHZ state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.Comment: 12 pages, 1 figure; replaced with revised version; terminology adapted to earlier work; reference added; results unchange

    Variational quantum Monte Carlo simulations with tensor-network states

    Get PDF
    We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approach by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D*D matrices with D up to 48. The computational cost of our scheme formally scales as ND^3, whereas standard MPS approaches and the related density matrix renromalization group method scale as ND^5 and ND^6, respectively, for periodic systems.Comment: 4+ pages, 2 figures. v2: improved data, comparisons with exact results, to appear in Phys Rev Let

    Characterization of non-local gates

    Get PDF
    A non-local unitary transformation of two qubits occurs when some Hamiltonian interaction couples them. Here we characterize the amount, as measured by time, of interaction required to perform two--qubit gates, when also arbitrarily fast, local unitary transformations can be applied on each qubit. The minimal required time of interaction, or interaction cost, defines an operational notion of the degree of non--locality of gates. We characterize a partial order structure based on this notion. We also investigate the interaction cost of several communication tasks, and determine which gates are able to accomplish them. This classifies two--qubit gates into four categories, differing in their capability to transmit classical, as well as quantum, bits of information.Comment: revtex, 14 pages, no pictures; proof of result 1 simplified significantl

    Optimal simulation of two-qubit Hamiltonians using general local operations

    Get PDF
    We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local resources but no entanglement nor classical communication. We characterize notions of simulation, and proceed to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise isolated systems AA and BB interact by a nonlocal Hamiltonian HHA+HBH \neq H_A+H_B. We consider the achievable space of Hamiltonians HH' such that the evolution eiHte^{-iH't} can be simulated by the interaction HH interspersed with local operations. For any dimensions of AA and BB, and any nonlocal Hamiltonians HH and HH', there exists a scale factor ss such that for all times tt the evolution eiHste^{-iH'st} can be simulated by HH acting for time tt interspersed with local operations. For 2-qubit Hamiltonians HH and HH', we calculate the optimal ss and give protocols achieving it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a polyhedron defined by a partial order on the set of 2-qubit Hamiltonians.Comment: (1) References to related work, (2) protocol to simulate one two-qudit Hamiltonian with another, and (3) other related results added. Some proofs are simplifie

    Entanglement capabilities of non-local Hamiltonians

    Get PDF
    We quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We give a procedure for optimizing the generation of entanglement. We also show that a Hamiltonian can create more entanglement if one uses auxiliary systems.Comment: replaced with published version, 4 pages, no figure

    Reversible combination of inequivalent kinds of multipartite entanglement

    Get PDF
    We present a family of tri-partite entangled states that, in an asymptotical sense, can be reversibly converted into EPR states shared by only two of parties (say B and C), and tripartite GHZ states. Thus we show that bipartite and genuine tripartite entanglement can be reversibly combined in several copies of a single tripartite state. For such states the corresponding fractions of GHZ and of EPR states represent a complete quantification of their (asymptotical) entanglement resources. More generally, we show that the three different kinds of bipartite entanglement (AB, AC and BC EPR states) and tripartite GHZ entanglement can be reversibly combined in a single state of three parties. Finally, we generalize this result to any number of parties

    Properties of Entanglement Monotones for Three-Qubit Pure States

    Get PDF
    Various parameterizations for the orbits under local unitary transformations of three-qubit pure states are analyzed. The interconvertibility, symmetry properties, parameter ranges, calculability and behavior under measurement are looked at. It is shown that the entanglement monotones of any multipartite pure state uniquely determine the orbit of that state under local unitary transformations. It follows that there must be an entanglement monotone for three-qubit pure states which depends on the Kempe invariant defined in [Phys. Rev. A 60, 910 (1999)]. A form for such an entanglement monotone is proposed. A theorem is proved that significantly reduces the number of entanglement monotones that must be looked at to find the maximal probability of transforming one multipartite state to another.Comment: 14 pages, REVTe
    corecore