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We present a family of tripartite entangled states that, in an asymptotical sense, can be reversibly con-
verted into Einstein-Podolsky-Rosen (EPR) states, shared by parties B and C, and tripartite Greenberger-
Horne-Zeilinger (GHZ) states. Thus we show that a bipartite and a genuine tripartite entanglement can
be reversibly combined in a tripartite state. For such states the corresponding fractions of GHZ and
EPR states represent a complete quantification of their (asymptotical) entanglement resources. More
generally, we show that AB, AC, and BC EPR entanglement and GHZ entanglement can be reversibly
combined in a single tripartite state. Finally, we generalize this result to any number of parties.

PACS numbers: 03.67.Hk, 03.65.Bz, 03.65.Ca
Understanding the inequivalent ways in which the parts
of a composite system can be entangled is one of the cen-
tral open questions of quantum information theory. When
the system consists of only two parts, A and B, and it
has been prepared in a pure state jc�AB, then its entangle-
ment properties are qualitatively equivalent to those of an
Einstein-Podolsky-Rosen (EPR) state [1],

1
p

2
�j00� 1 j11�� , (1)

in the following sense [2]. If two parties, Alice and Bob,
share N copies of the system in state jc�AB and are allowed
to perform local operations assisted with classical commu-
nication (LOCC), then they can transform, reversibly in
the large N limit, the state of their systems into NE�cAB�
copies of an EPR state (1), where E�cAB� is the entropy of
entanglement of state jc�AB, namely, the von Neumann en-
tropy of the reduced density matrix describing either part
A or B. Thus, reversibility of asymptotical conversions jus-
tifies that we regard all bipartite pure-state entanglement as
equivalent and quantify it by means of E�cAB�.

It has been recently shown [3] that a Greenberger-
Horne-Zeilinger (GHZ) state [4]
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of a tripartite system is inequivalent, even in this asymp-
totic sense, to EPR states distributed among the parties.
This indicates that there is genuine tripartite entanglement.
Similarly [3] (see also [5]), for any number n of parties
sharing a system, the n-partite GHZ state
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�j0≠n� 1 j1≠n�� (3)

cannot be reversibly converted by means of LOCC into
any distribution of entangled states, each one involving
less than n parties. Here we will refer to entanglement
of the form (3) as canonical. Thus, in the general case of a
m-partite system, one can find at least 2m 2 m 2 1 kinds
of entanglement that are asymptotically inequivalent. They
0031-9007�00�85(3)�658(4)$15.00
correspond, for each n � 2, . . . , m, to all m!��n!�m 2

n�!� kinds of n-canonical entanglement, that is involving
different subsets of n parties [6].

In this Letter we show that inequivalent kinds of mul-
tipartite entanglement can be reversibly combined into a
pure state by means of LOCC. More specifically, we show
that all kinds of n-canonical entanglement, n � 2, . . . , m,
can be combined in a m-partite state, and then again
reextracted, with asymptotically vanishing losses.

For instance, we will prove that N copies of some tri-
partite state

jc� � c0j000� 1 c1j1�
1
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�j11� 1 j22�� (4)

can be reversibly transformed, in the limit N ! `, into
copies of an EPR state shared by Bob and Claire, and
copies of a GHZ state, that is,

jc�≠N � jEPRBC�≠NlBC ≠ jGHZ�≠NlABC . (5)

This means that the asymptotical entanglement properties
of jc� can be completely characterized by simply specify-
ing the values of lBC and lABC . Some other states jc 0� of
three parties will be reversibly converted into the three in-
equivalent kinds of bipartite EPR states and GHZ states, so
that their entanglement can be characterized by the multi-
component measure Lc 0 � �lAB, lAC , lBC; lABC�. For an ar-
bitrary number m of parties, a �2m 2 m 2 1�–component
measure will also quantify the entanglement properties
of some other states jc 00� by providing the amount of
all inequivalent kinds of n-canonical entanglement �n �
2, . . . , m� that can be reversibly extracted from them.

While it is not yet clear how many asymptotically in-
equivalent kinds of entanglement exist, not even whether
there is only a finite number of them for the simplest non-
trivial case (i.e., for tripartite systems), our results arguably
help in the ongoing effort [3,5,7] to understand and clas-
sify multipartite quantum correlations, as they show for the
first time that it is possible to quantify the entanglement of
a given state by relating it to several inequivalent forms of
entanglement.
© 2000 The American Physical Society
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We start by analyzing the asymptotic properties of the
tripartite state jc� [ C�2 ≠ C�3 ≠ C�3 given by Eq. (4),
where c0, c1 $ 0, c2

0 1 c2
1 � 1. We will show how the

parties can extract, from N copies of it and by means
of LOCC, up to Nc2

1 1 g1�N� EPR pairs between Bob
and Claire and NS�c2

0, c2
1� 1 g2�N� GHZ states, where

S�	xi
� � 2
P

i xi log2xi and both g1�x��x and g2�x��x
vanish as x ! `. We will then prove that the same
amounts of canonical entanglement—up to corrections
that vanish as N ! `—suffice to create the state jc�≠N

(actually a state as faithful to jc�≠N as wished if N
can be made arbitrarily large). Therefore we will have
lBC � c2

1 and lABC � S�c2
0, c2

1�. Finally, we will then
describe generalizations of this result to all possible kinds
of canonical entanglement and to an arbitrary number of
parties.

Let us consider, then, two copies of jc�, which after
some convenient relabeling of the local orthonormal basis
in H N�2 � C�4 ≠ C�9 ≠ C�9 can be written as

jc�≠2 � c2
1j1
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1 c2
0j1

2�j12
112

1 � (6) .

By means of a local measurement the parties can project
the state (6) into one of the three subspaces characterized
by a constant coefficient ck

0c22k
1 �k � 0, 1, 2�. We point

out the relevant fact that either Alice, Bob, or Claire could
perform such a measurement locally because jc� is a linear
combination c0jf1� 1 c1jf2� of two locally orthogonal
states jfi�, i.e.,

Tr�ra
i ra

j � � 0 ; i fi j, a � A, B, C , (7)

where r
a
i is the reduced density matrix of jfi� for sub-

system a, and this implies that the three subspaces of (6)
are also locally orthogonal; in other words, the parties can
manipulate locally each of these subspaces independently.
If the result of the measurement corresponds to k � 0,
then Bob and Claire will be sharing a 22-level maximally
entangled state, that is, two EPR pairs. If the outcome
corresponds to k � 1, then the parties end up sharing an
EPRBC state and a GHZ state, as can be straightforwardly
checked by expanding jEPRBC� ≠ jGHZ� as a linear com-
bination of product states. Finally, an outcome related to
the subspace k � 2 leaves the parties with a product state
j000�. This structure of outcomes easily generalizes to the
case of N copies. Let us call block �N , k�, denoted by
jBN ,k�, the normalized projection of jc�≠N into the sub-
space characterized by the coefficient ck

0cN2k
1 , that is,

jc�≠N �
NX

k�0

ck
0cN2k

1

p
bN ,k jBN ,k� , (8)
bN ,k � N!��k!�N 2 k�!�. A direct computation shows
that jBN ,k� is of the form

jBN ,k� �
1

p
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	j1k� �j1k
11k

1� 1 j2k
12k

1� 1 · · · 1 jrk
1 rk

1 ��

1 j2k� �j1k
21k

2� 1 j2k
22k

2� 1 · · · 1 jrk
2 rk

2 ��
1 jtk� �j1k

t 1k
t � 1 j2k

t 2k
t � 1 · · · 1 jrk

t rk
t ��
 ,

(9)

where r � 2N2k , t � bN ,k , and the local states satisfy
�ik

a j jk0

b � � di,jdk,k0da,b in both Bob and Claire and
�ik j jk0� � di,jdk,k0 in Alice. Notice that (9) is equivalent
to the tensor product of an r-level EPR state and a t-level
GHZ state,

jBN ,k� �

√
1
p

r

rX
i�1

jii�BC

!
≠

√
1
p

t

tX
i�1

jiii�

!

� jr 2 EPRBC� ≠ jt 2 GHZ� . (10)

Thus, by means of a local measurement projecting onto
these blocks, the parties will obtain state (10) with proba-
bility PN ,k � bN ,kc2k

0 c
2�N2k�
1 . The expectation valuesø

log2r
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N 2 k

N
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ø
log2t
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¿
�

NX
k�0

PN ,k
log2bN ,k

N

(11)

correspond, respectively, to the fraction lBC of EPRBC

states and to the fraction lABC of GHZ states that are
obtained, on average and per copy of jc�, from jc�≠N

[8]. Because of the smooth behavior of the functions
�N 2 k��N and �log2bN ,k��N compared to the bino-
mial distribution PN ,k , we can calculate the expectation
values (11)—up to corrections that vanish in the limit
N ! `—by just evaluating the two functions at the
peak of PN ,k , namely, at kmax � Nc2

0, which gives us the
announced amount of entanglement for each of the two
canonical forms.

Let us look now at the inverse transformation. We start,
for clearness sake, by showing that two EPRBC and two
GHZ states suffice to create state (6) locally and with cer-
tainty. Let us expand jEPRBC�≠2 ≠ jGHZ�≠2 as
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(12)

In this expression [cf. Eq. (6)] we would like to give the
first row a weight c2

1; in both the second and third rows
we should get rid of j32

i 32
i � and j42

i 42
i � and give each of the
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rows a weight c0c1; the fourth row should be reduced to
a product state with weight c2

0 . After these changes have
been made, we will have state (6). We first note that the
parties can transform, with certainty, the two GHZ states
into a triorthogonal state with arbitrary relative weights,

1
2

4X
i�1

jiii� °!
4X

i�1

lijiii� , (13)

by means of a local positive operator-valued measurement
(POVM) 	Oj
, j � 1, . . . 4, on (any) one of the parties fol-
lowed by an outcome-dependent, local unitary Uj applied
once in each of the parties’ subsystems. Here Oj is propor-
tional to

P
i liji ©4 j� �i ©4 jj [9] and Uj takes ji ©4 j�

into ji� on each local subsystem. The tensor product of
two EPRBC states with the resulting state in (13) is equiva-
lent to (12) but with row i having weight li . Bob and
Claire can now address each of the four rows locally and
reduce their length at wish. Indeed, in order to shorten the
fourth row into a product vector, one of them, say, Bob,
can perform a POVM with four positive operators

Qi � ji2
1� �i2

1 j 1
1
2

X
j�2,3,4

Pj , i � 1, . . . , 4 , (14)

where Pj is a projector onto the local subspace support-
ing row j, e.g., P2 �

P
i ji

1
1� �i1

1 j; then Bob and Claire
need to relabel the surviving term ji2

1 i2
1� of the first row as

j12
112

1�. By means of similar POVMs followed by outcome-
dependent local unitaries, Bob and Claire can also tailor
the second and third rows so that they contain only two
product terms each. Explicitly, a two-outcome POVM that
reduces the second row reads

Q0
1 � j11

111
1� �11

111
1j 1 j21

121
1� �21

121
1j 1
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X
j�1,3,4

Pj ,

Q0
2 � j31

131
1� �31

131
1j 1 j41

141
1� �41

141
1j 1

1
p

2

X
j�1,3,4

Pj .

(15)

Notice that such measurements do not modify the relative
weight of the rows. A proper choice of the coefficients li

in the first step of the transformation, namely l1 � c2
1,

l2 � l3 � c1c0, and l4 � c2
0, completes therefore the

protocol for preparing two copies of jc�.
In the case of a large number N of copies the parties start

with several EPRBC and GHZ states, and want to create a
state

jN
k1

k2
� � K

k1X
k�k2

cN2k
0 ck

1

p
bN ,k jBN ,k� , (16)

such that F � j�Nk1

k2
j c≠N �j2 � 1 2 h�N�, where

h�x ! `� � 0, that is, a state which asymptotically can-
not be distinguished from jc�≠N . We note that an arbitrary
faithfulness can be achieved, asymptotically, by consid-
ering only the blocks jBN ,k� [cf. Eq. (9)] that correspond
to k’s around kmax � Nc2

0. Indeed, a straightforward
computation of the fidelity shows that it suffices to take
660
k6 � c2
0N 6 aNb for some a . 0 and 1�2 , b , 1:

by noting that a binomial distribution is asymptotically
equivalent to a normal (Gaussian) distribution, the fi-
delity F can be seen to be bounded from below by
F�2aNb21�2�, where F�x� � 1�

p
2p

Rx
2x ey2�2 dy. For

our choice of a, b, we see that F ! 1 when N ! `.
As with the N � 2 case, our plan is [starting from a
reasonable amount of EPRBC and GHZ states, which
can be expanded in the fashion of (12)] (i) to modify
conveniently the weight of each row in the expansion
and (ii) to shorten the length of each row, in order to
obtain the pattern of lengths given by the block structure
of (16). Notice that a straightforward generalization of
(13) provides row i with an arbitrary weight li by locally
manipulating the initial GHZ states, and we have also
already seen how to shorten each row independently
by means of a local POVM in either Bob’s or Claire’s
side (see POVMs (14) and (15) as examples). Thus,
the only question left concerns the amount of canonical
entanglement required to produce all blocks jBN ,k� in
(16). Since we have a mechanism to shorten but not
to lengthen the rows, the number of EPRBC states must
allow one to obtain the longest rows, which are those of
the block jN , k2� and contain 2N2k2 product terms each.
That is, N 2 k2 EPRBC states will suffice. The total
number of GHZ states required is the logarithm of the
total number of rows in (16), and thus reads as follows:
log2�

Pk1

k�k2
bN ,k�. Let k0 [ �k2, k1� be the value that

maximizes bN ,k in this interval. Then the amount of GHZ
states required to prepare (16) is bounded from above by
log2��k1 2 k2 1 1�bN ,k0 �. Finally, substitution of k6

and k0 in this bound and the previous estimation for
EPRBC states shows that both amounts of canonical en-
tanglement needed to prepare (16) are the expected ones,
apart from corrections which scale sublinearly in N and
that therefore become irrelevant for N sufficiently large.
This concludes the proof that state (4) is asymptotically
equivalent to canonical entanglement.

We can now generalize the previous example and re-
versibly combine the three kinds of bipartite entanglement
and the canonical tripartite entanglement in a single state.
Indeed, the tripartite state,

jc 0� � c0j000� 1 c1j1�
1
p

2
�j11� 1 j22��

1 c2
1
p

2
�j233� 1 j334��

1 c3
1
p

2
�j44� 1 j55�� j5� , (17)

can be transformed by means of LOCC into EPR states
shared by two parties and into GHZ states, with the asymp-
totic ratios being lAB � c2

1, lAC � c2
2, and lBC � c2

3 for
the bipartite entanglement and lABC � S�	c2

i 
� for the tri-
partite entanglement.

This result follows from considering analogous trans-
formations to the ones described above. The expansion
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of the state of N copies of jc 0� into locally orthogonal
subspaces such as in (8) depends now on three indepen-
dent indices, with the weights defining the block structure
being c

k0
0 c

k1
1 c

k2
2 c

N2k12k22k3
3 . The binomial probability dis-

tribution is replaced by a multinomial distribution, centered
at ki � Nc2

i , and each one of the new blocks jBN ,k0,k1,k2�
is equivalent to the tensor product of some number of GHZ,
EPRAB, EPRAC , and EPRBC states. A local measurement
onto the blocks leads, for sufficiently large N , to the de-
sired expectation values for the fractions of canonical en-
tanglement. Conversely, these amounts of entanglement
suffice to create all of the relevant blocks jBN ,k0,k1,k2�. This
is done by introducing some weights li in the initial GHZ
states and by locally tailoring the (now multidimensional)
rows in the pertinent expansion, as we explained in the
previous example.

More generally, let the m-partite state

jc 00� �
lX

i�0

cijfi� (18)

be a linear combination of locally orthogonal states [see
Eq. (7)] such that each one is the tensor product of a
canonical state jti� (3) for ni of the parties, and a prod-
uct vector for the remaining m 2 ni parties [10]. Then N
copies of the state jc 00� are asymptotically equivalent to
Nc2

0 copies of jt0�, . . . , Nc2
l copies of jtl� and to NS�	c2

i 
�
copies of a m-canonical state, i.e.,

jc 00�≠N �

"
lO

i�0

jti�≠Nc2
i

#
≠ �j0≠m� 1 j1≠m��≠NS�	c2

i 
�.

(19)

In this Letter we have provided examples of multipar-
tite states whose entanglement properties can be classified
and quantified in relation to the set of canonical states (3).
The criteria underlying such classification is the asymptoti-
cal equivalence of states under LOCC. We have shown
that at least in some cases, namely, for states of the form
(18), this criteria brings a significant simplification to the
general problem of classifying entanglement. Indeed, our
results show that the states (18), which depend on the
set of continuous nonlocal parameters 	ci
, contain only a
finite set of inequivalent forms of entanglement. We have
gone further and quantified the amount of each form of
entanglement contained in state (18), which gives rise to
a multicomponent measure. We do not know to what ex-
tent the coefficients, as well as the reference states of this
measure, are essentially unique.
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