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We quantify the capability of creating entanglement for a general physical interaction acting on
two qubits. We give a procedure for optimizing the generation of entanglement. We also show that
a Hamiltonian can create more entanglement if one uses auxiliary systems.
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In the past 2–3 years there has been a considerable in-
crease in experimental activity aiming to create entangled
quantum states. One reason is the potential applications
of entanglement to quantum information processing. Cre-
ating entanglement has been possible in quantum optics
for more than a decade; however, now many new com-
munities, working in a variety of experimental areas (for
example, NMR, condensed matter physics) are also join-
ing the field [1]. In general, entanglement between two
systems can be generated if they interact in a controlled
way. However, in most experiments these interactions are
weak which makes the production of entanglement a very
difficult task. Thus, it would be very convenient to have
a theory which would provide us with the best way of ex-
ploiting interactions to produce entanglement.

In this Letter we analyze the entanglement capabilities
of Hamiltonians. In particular, we would like to answer
questions such as the following: Given an interaction
(Hamiltonian), what is the most efficient way of entan-
gling particles? Can we make the process more efficient
by supplementing the action of the Hamiltonian with some
local unitary operations? Can we increase the entangle-
ment more efficiently by using some ancillas?

So far, much of the theoretical effort in quantum infor-
mation theory has been devoted to the characterization and
quantification of the entanglement of a given state. Very
recently, it has been realized that there is a parallel notion
of the entanglement in the dynamics of a system [2]. In
[2], the authors consider the situation that one has a given
unitary transformation and ask, for example, how much
state entanglement is needed to produce it. Here we focus
on a different issue: Given an interaction (i.e., a Hamil-
tonian) how can we make the most effective use of it [3]?
What we propose here is to define and determine the entan-
glement capabilities of physical processes, in particular, of
unitary evolutions [4]. This is a very relevant problem not
only from the theoretical point of view but also from the
experimental one. Of course, this problem is even more
difficult than the one of quantifying the entanglement of
states. In any case, in this Letter we give the first steps in
this direction by considering the case in which the physical
process is acting on two qubits.
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From our results it turns out that (i) it is more efficient
to produce entanglement if initially one already has some.
(ii) The best initial entanglement is universal, i.e., inde-
pendent of the physical process. (iii) One can improve
the performance of a physical process by complementing
it with fast local operations. (iv) One can also improve
it (in certain cases) by using auxiliary systems. (v) All
entangling Hamiltonians can simulate each other and
are thus qualitatively equivalent; we also provide an
upper bound on the time required for one Hamiltonian to
simulate another.

We consider two qubits interacting via a nonlocal Ham-
iltonian H. We want to determine the most efficient way in
which we can use such an interaction to produce entangle-
ment. We will characterize the entanglement of a state of
the qubits at a given time t, jC�t��, by some entanglement
measure E. In order to quantify the entanglement pro-
duction, we define the entanglement rate G at a particular
time t of the interaction as follows:

G�t� �
dE�t�

dt
. (1)

This quantity depends on jC�t�� not only through its en-
tanglement E. The goal is then to find the conditions
which must be satisfied in order to obtain a maximal en-
tanglement rate. In particular, we will be interested in
determining the following: �i� For any initial entangle-
ment E of the two-qubit system, what is the state jC�,
say jCE �, for which the interaction produces the maxi-
mal rate GE? �ii� The maximal achievable entanglement
rate Gmax [5], Gmax � maxEGE and the state jCmax� for
which G � Gmax.

These quantities are interesting because the knowledge
of the state jCE � will allow us to find out the most efficient
way of entangling the qubits. The idea is to supplement
the interaction Hamiltonian H with appropriate local uni-
tary operations in such a way that the state of the qubits
at any time t is precisely jCE�t��, for which the increase
of entanglement is optimal. In order to show how this can
be achieved, let us consider that the evolution given by
H proceeds in very small time steps dt. Let us also as-
sume that the qubits are initially disentangled. Using local
© 2001 The American Physical Society 137901-1
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operations, we can always prepare the state jC0�— that is,
the product state which most efficiently becomes entangled
under the action of H. After a time step dt, the state will
change and its entanglement will increase to dE. Then,
we use (fast) local unitary operations to transform the new
state of the qubits into the state jCdE� for which G is opti-
mal. Note that this is always possible, since for qubits all
states with the same value of E, say dE, are connected by
local unitary transformations. By proceeding in the same
way after every time step, and taking the continuous time
limit dt ! 0, we obtain that the state of the qubits at time
t is always the optimal one, jCE�t��. Obviously, in an ex-
perimental realization, this procedure requires that we can
apply the appropriate local transformations in times which
are short compared to the typical time scale tH associ-
ated with H, tH � �emax 2 emin�21, where emax and emin
are the maximum and minimum eigenvalues of H, and we
have set h̄ � 1.

Knowledge of GE also permits us to determine the maxi-
mum amount of entanglement Emax produced as a func-
tion of time. We just have to express GE as an explicit
function of E, substitute it in (1), and solve the differ-
ential equation to determine Emax�t�. Note that the op-
timal procedure described above will precisely reach the
entanglement Emax�t�.

The state jCmax� is important since it gives rise to the
maximal increase of entanglement, and therefore corre-
sponds to the best operational point. After reaching the
state jCmax� with the procedure described in the previous
paragraph, the entanglement would be produced in a very
efficient way, if one could transfer the entanglement that
is gained after each time step dt to other qubits (using
entanglement dilution [6] or some other means). In par-
ticular, it would increase proportionally to the time, Gmax

being the proportionality constant.
In the following, we will show how to determine jCE�,

GE , jCmax�, and Gmax for an arbitrary Hamiltonian H. To
this end, it is convenient to use the Schmidt decomposition
of the state of the qubits jC�t�� to write

jC� �
p

P jw, x� 1 eia
p

1 2 P jw�, x�� , (2)

where for the sake of short-hand notation we have omit-
ted the time dependence of all these quantities. Here,
�wjw�� � �xjx�� � 0 and P # 1�2. Note that E must
depend only on the Schmidt coefficient P, given the fact
that it must be invariant under local unitary operations.
For example, if we choose as an entanglement measure the
entropy of entanglement [6]— the entropy of the reduced
density operator of one of the qubits—we will have

E�P� � 2P log2�P� 2 �1 2 P� log2�1 2 P� . (3)

Note that the entropy of entanglement quantifies the
amount of EPR entanglement contained asymptotically in
a pure state jC�. That is, E�P� gives the ratio of maxi-
mally entangled EPR states jC2� � 1�

p
2 �j01� 2 j10��

which can be distilled from (are needed to create) jC�.
Thus, we can write
137901-2
G�t� �
dE
dP

dP
dt

. (4)

In (4), given a particular entanglement measure E�P�,
we just have to determine dP�dt. In order to do
that, we need to find the (infinitesimal) time evolu-
tion of the Schmidt coefficients of the state of the
qubits. After a time dt we will have jC�t 1 dt�� �
exp�2iHdt� jC�t�� � �1 2 iHdt� jC�t��. The correspon-
ding reduced density operator rA�t 1 dt�, where rA,B �
TrB,A�jC� �Cj�, can then be written as rA�t 1 dt� �
rA�t� 2 idt TrB�	H, jC�t�� �C�t�j
�. The eigenvalues
(Schmidt coefficients) of this operator can be easily de-
termined starting from rAjw� � Pjw� and using standard
perturbation theory. We find

dP
dt

� 2
q

P�1 2 P� 3 Im	eia�w, xjHjw�, x��
 , (5)

where we have omitted the time dependence. Upon substi-
tution in (4) we obtain the entanglement rate. Since we are
interested in maximizing G, it is clear that we can always
choose a such that

G � f�P� jh�H, w, x�j , (6)

where

f�P� � 2
q

P�1 2 P� E0�P� , (7a)

h�H, w, x� � �w, xjHjw�, x�� . (7b)

By analyzing Eq. (6) we can extract some interesting
conclusions, even before determining the maximum value
of G explicitly. Given the fact that f and h depend on
different parameters, in order to determine the quantities
mentioned in �i� and �ii� we can maximize the functions
f and jhj independently. If we want to determine the
quantities mentioned in �i�, we have to fix the value of E.
In that case, P is also fixed and therefore the maximum of
the entanglement rate will correspond to a state of the form
(2) with some fixed jw�, jx�, and a (which maximize jhj�.
That is, for any value E of the entanglement, the states
jw� and jx� for which the maximal entanglement rate GE

is obtained do not depend on E, but only on the form of
the Hamiltonian H. Let us denote by hmax the maximum
value of jhj; that is,

hmax � max
jjwjj,jjxjj�1

j�w,xjHjw�, x��j . (8)

We can then easily determine how the entanglement would
evolve with time if we always drive the qubits with lo-
cal operations so that at each time their state corresponds
to the optimal one. We can simply solve the differen-
tial equation (5), obtaining P�t� � sin2	hmaxt 1 f0
, with
P�0� � sin2�f0�. Using the explicit dependence of E
on P, we can then directly calculate E�t�. The evolu-
tion of the entanglement is fully characterized by hmax,
which is a quantity that depends only on the interaction
Hamiltonian. That is, for a given H, hmax measures the
137901-2
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capability of creating entanglement. In the following we
give a simple way of determining hmax, which allows us
to classify the entanglement capability of any Hamilto-
nian. On the other hand, once the entanglement mea-
sure is specified, we can calculate the value P0 of P for
which we obtain the maximal rate by simply consider-
ing the function f�P�. For example, choosing the expres-
sion (3) for the entanglement, we find that P0 solves the
equation ln 12P0

P0
� 2

122P0
, i.e., P0 � 0.0832 which gives

E�P0� � 0.413. This shows that, in order to increase the
entanglement of a two-qubit system in an optimal way, it
is better to start with some initially entangled state rather
than a product state [7]. Note that the optimal initial en-
tanglement E�P0� is independent of H.

In the following we will show how to determine the en-
tanglement capability hmax of a general Hamiltonian H
acting on the qubits. First, we will show how, if we sup-
plement the evolution of H by local unitary operations,
we can express H in a standard form that only depends on
three parameters. Second, we will derive an expression for
hmax in terms of those parameters.

Except for a trivial constant, we can always express a
general Hamiltonian as

H �
3X

i�1

ais
A
i ≠ 'B 1

3X
j�1

bj'A ≠ sB
j

1

3X
i,j�1

gi,js
A
i ≠ sB

j . (9)

Here, si are the Pauli operators, and �a, �b, and g are two
real vectors and a real matrix, respectively. We now show
that by supplementing the evolution operator with local
unitary operations we can obtain an effective Hamiltonian
which has one of the two standard forms

Ĥ6 � m1sA
1 ≠ sB

1 6 m2sA
2 ≠ sB

2 1 m3sA
3 ≠ sB

3 ,

(10)

where m1 $ m2 $ m3 $ 0 are the (sorted) singular val-
ues of the matrix g [8]. First, we note that the terms
corresponding to �a and �b in (9) give no contribution to
hmax (8) and can therefore be neglected. Second, we apply
the local operations U �V � and Uy �Vy� to the first (sec-
ond) qubit at the beginning and end of the evolution pro-
cess, respectively. We select them such that Uys

A
i U �P3

k�1 OA
k,is

A
k , Vys

B
j V �

P3
l�1 OB

j,ls
B
l , where OA,B are

orthogonal matrices of determinant one, each being plus
or minus the orthogonal matrices in a singular value de-
composition of g. Thus the total (nonlocal) effect of the
evolution for a time t is equivalent to the one obtained with
the Hamiltonian Ĥ1 �Ĥ2� for the same time if detg $ 0
�detg , 0�. Without loss of generality, we may take H of
the form Ĥ1 (10) in what follows [9].

Now let us determine hmax in terms of m1,2,3. We can
write h�H, w, x� �

P3
k�1 mk�wjs

A
k jw

�� �xjs
B
k jx

��. By
using the Cauchy-Schwarz inequality, it can be checked
that the maximum of (the absolute value of) this
137901-3
function is reached for jx� � jw��. In this case, by
using the fact that jw� �wj 1 jw�� �w�j � ' we obtain
h�H, w, w� �

P3
k�1 mk 2

P3
k�1 mk�wjskjw�2. Taking

into account that m1 $ m2 $ m3, we see that the maxi-
mum value occurs when jw� � j0� or jw� � j1�, i.e., an
eigenstate of s3. For that choice we obtain

hmax � m1 1 m2 . (11)

Summarizing, once we have transformed the Hamiltonian
H to the standard form (10) we find that, for a given value
of E (and therefore of P�,

jCE� �
p

P j0, 1� 1 i
p

1 2 P j1, 0� , (12a)

GE � f�P�hmax , (12b)

where hmax � m1 1 m2. The maximum rate Gmax is ob-
tained for P � P0, where P0 is the value that maximizes
f�P�. Thus, jCmax� and Gmax are given by (12) with
P � P0. For example, for the entanglement measure (3),
P0 � 0.0832 which leads to f�P0� � 1.9123.

So far, we have calculated the most efficient way of en-
tangling two qubits if we use local unitary operations act-
ing on each of the qubits. We have not allowed, however,
local operations which entangle each of the qubits with
local ancillas. We will now show that this possibility per-
mits us to increase the maximum entanglement rate Gmax
for certain types of Hamiltonians. We will first general-
ize the formulas derived above to the case of multilevel
systems, given that the system qubit-plus-ancilla is of this
sort. We consider a state jC� with Schmidt decomposition
jC� �

PN
n�1

p
ln jwn, xn�. As before, any entanglement

measure E will depend only on the Schmidt coefficients
ln $ 0. In particular, in the following we will use the en-
tropy of entanglement, E� �l� � 2

PN
n�1 ln log2�ln�. By

using the definition (1) of the entanglement rate, we have

G̃ �
NX

n�1

≠E
≠ln

dln

dt
�

1
N

NX
n,m�1

∑
≠E
≠ln

2
≠E
≠lm

∏
dln

dt
,

(13)

where we have used the fact that the sum of all the
Schmidt coefficients is constant. Using perturbation the-
ory as before, we find dln

dt � 2
p

ln Im	�wn, xnjHjC�
 �
2

PN
m�1

p
lnlm Im	�wn, xnjHjwm, xm�
.

Rather than proceeding in complete generality, we now
consider an example which demonstrates that adding an-
cillas may allow one to increase entanglement more effi-
ciently than is possible without the use of ancillas. We
will consider the case in which the ancillas are also qubits.
We write P � l1 and concentrate on the case in which
l2 � l3 � l4 � �1 2 P��3. In that case, Eq. (13) sim-
plifies to

G̃ � f̃�P�h̃�H, wn, xn� , (14)

where now

f̃�P� � 2
q

P�1 2 P��3 log2	�1 2 P���3P�
 , (15a)
137901-3
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h̃�H, wn,xn� �
4X

n�2

Im	�w1, x1jHjwn, xn�
 . (15b)

We can always choose the phase of the states jwn� such
that all the terms on the sum add with the same sign.
We can therefore replace the imaginary parts of the
terms in the above expression by their absolute values,
and in (14) we can replace f̃�P� by j f̃�P�j. We find
that P̃0 � 0.8515 [which corresponds to an entropy
of entanglement E�P̃0� � 0.8415�] maximizes j f̃�P�j
(15a) and leads to j f̃�P̃0�j � 1.6853. Proceeding as be-
fore, we can easily maximize h̃. We obtain that the
maximum value is h̃max � m1 1 m2 1 m3, which occurs
when jwn� � jxn� are orthogonal maximally entangled
states between the qubit and the ancilla. For example,
in the case that detg $ 0, the choice jw1� � jf1�,
jw2� � i3�2jc1�, jw3� � i1�2jc2�, jw4� � i3�2jf2�,
where �jf6�, jc6�� are Bell states [10], together with
P � P0 � 0.8515, leads to a maximal (under the previous
assumptions on the li’s) entanglement rate G̃ � G̃max.

Let us compare the cases in which we use ancillas
and the one in which we do not use them. On the one
hand, we have jf̃�P̃0�j , jf�P0�j. But on the other hand,
h̃max $ hmax. Thus, if m3 fi 0 it may be the case that the
use of ancillas can help to increase the maximum rate of
entanglement Gmax as well as the rate GE for a given entan-
glement E of state jC�. This is in fact the case if we have,
for example, m1 � m2 � m3 (i.e., h̃max � 3�2hmax� . In
this case we obtain G̃max � 1.3220Gmax. In a similar way,
one can check, for this specific Hamiltonian, that G̃E $ GE

if the initial entanglement satisfies E $ 0.08.
Finally, it is easy to show that all entangling Hamilto-

nians are qualitatively equivalent when assisted by local
operations. In particular, given two Hamiltonians H and
H0 with either hmax � ah0

max or h̃max � ah̃0
max, one can

simulate the action of H 0 for any time t by applying H for,
at most, 3a21t. This can be seen as follows: Applying H
of the form (10) for dt�2 followed by a local unitary op-
eration s1 in A before and after another application of
H for dt�2 is equivalent to the application of the Ham-
iltonian H1 � m1s1 ≠ s1 for the time dt, provided that
dt is infinitessimally small. Since H1 is locally equiva-
lent to Hk � m1sk ≠ sk , applying sequentially Hk for
dtm0

k�m1 is equivalent to the application of H 0 for the
time dt. Using the restrictions on mk , m0

k the claim read-
ily follows. The question of efficient simulation of an-
other Hamiltonian in the same time t will be addressed in
future work.

In summary, we have found the optimal way of using
any nonlocal interaction to entangle a pair of qubits. The
idea is to use local operators to drive the instantaneous
state to the one that maximizes the entanglement rate, at
each moment of the evolution. We have found that the
entanglement capacity of any given Hamiltonian is deter-
mined by the sum of the two largest singular values of the
matrix g defined in (14). Finally, we have shown that, for
137901-4
certain Hamiltonians, one can overcome this maximal en-
tanglement rate by using ancillas prepared in maximally
entangled states with the qubits.
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Note added.—The idea of universal simulation of
Hamiltonians as discussed in this paper originated in a
larger collaboration, including several other people, and is
developed in detail in [11]. After completion of this paper,
we also learned that the notion of universal simulation
of Hamiltonians has been independently addressed by
Dodd et al. [12].
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