14,098 research outputs found

    Quantum mechanical analysis of the elastic propagation of electrons in the Au/Si system: application to Ballistic Electron Emission Microscopy

    Get PDF
    We present a Green's function approach based on a LCAO scheme to compute the elastic propagation of electrons injected from a STM tip into a metallic film. The obtained 2D current distribution in real and reciprocal space furnish a good representation of the elastic component of Ballistic Electron Emission Microscopy (BEEM) currents. Since this component accurately approximates the total current in the near threshold region, this procedure allows --in contrast to prior analyses-- to take into account effects of the metal band structure in the modeling of these experiments. The Au band structure, and in particular its gaps appearing in the [111] and [100] directions provides a good explanation for the previously irreconcilable results of nanometric resolution and similarity of BEEM spectra on both Au/Si(111) and Au/Si(100).Comment: 12 pages, 9 postscript figures, revte

    On the transmission of light through a single rectangular hole

    Full text link
    In this Letter we show that a single rectangular hole exhibits transmission resonances that appear near the cutoff wavelength of the hole waveguide. For light polarized with the electric field pointing along the short axis, it is shown that the normalized-to-area transmittance at resonance is proportional to the ratio between the long and short sides, and to the dielectric constant inside the hole. Importantly, this resonant transmission process is accompanied by a huge enhancement of the electric field at both entrance and exit interfaces of the hole. These findings open the possibility of using rectangular holes for spectroscopic purposes or for exploring non-linear effects.Comment: Submitted to PRL on Feb. 9th, 200

    Hot electron transport in Ballistic Electron Emission Spectroscopy: band structure effects and k-space currents

    Full text link
    Using a Green's function approach, we investigate band structure effects in the BEEM current distribution in reciprocal space. In the elastic limit, this formalism provides a 'parameter free' solution to the BEEM problem. At low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experimental I(V) curves at low voltages. At higher voltages inelastic effects are approximately taken into account by introducing an effective RPA-electron lifetime, much in similarity with LEED theory. For thick films, however, additional damping mechanisms are required to obtain agreement with experiment.Comment: 4 pages, 3 postscript figures, revte

    Optimal light harvesting structures at optical and infrared frequencies

    Get PDF
    One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such enhancement is a function of the wavelength. It decreases from 39% in the optical part of the spectrum to 15% at the long wavelength infrared.Comment: 13 pages, 5 figure

    Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit

    Full text link
    In this work we explore the transmission properties of a single slit in a metallic screen. We analyze the dependence of these properties on both slit width and angle of incident radiation. We study in detail the crossover between the subwavelength regime and the geometrical-optics limit. In the subwavelength regime, resonant transmission linked to the excitation of waveguide resonances is analyzed. Linewidth of these resonances and their associated electric field intensities are controlled by just the width of the slit. More complex transmission spectra appear when the wavelength of light is comparable to the slit width. Rapid oscillations associated to the emergence of different propagating modes inside the slit are the main features appearing in this regime.Comment: Accepted for publication in Phys. Rev.

    Ballistic Electron Emission Microscopy on CoSi2{}_2/Si(111) interfaces: band structure induced atomic-scale resolution and role of localized surface states

    Get PDF
    Applying a Keldysh Green`s function method it is shown that hot electrons injected from a STM-tip into a CoSi2{}_2/Si(111) system form a highly focused beam due to the silicide band structure. This explains the atomic resolution obtained in recent Ballistic Electron Emission Microscopy (BEEM) experiments. Localized surface states in the (2×1)(2 \times 1)-reconstruction are found to be responsible for the also reported anticorrugation of the BEEM current. These results clearly demonstrate the importance of bulk and surface band structure effects for a detailed understanding of BEEM data.Comment: 5 pages, RevTex, 4 postscript figures, http://www.icmm.csic.es/Pandres/pedro.ht

    Sampling of cashew nuts from cashew tree clones.

    Get PDF
    Made available in DSpace on 2020-06-19T04:13:53Z (GMT). No. of bitstreams: 1 ART20039.pdf: 1863898 bytes, checksum: 9c5f02c233c9146d433aa041c5b6c544 (MD5) Previous issue date: 2020bitstream/item/214071/1/ART20039.pd
    corecore