403 research outputs found

    Fuel consumption and aftertreatment thermal management synergy in compression ignition engines at variable altitude and ambient temperature

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting,and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/14680874211035015[EN] New regulations applied to the transportation sector are widening the operation range where the pollutant emissions are evaluated. Besides ambient temperature, the driving altitude is also considered to reduce the gap between regulated and real-life emissions. The altitude effect on the engine performance is usually overcome by acting on the turbocharger control. The traditional strategy assumes to keep (or even to increase) the boost pressure, that is, compressor pressure ratio increase, as the altitude is increased to offset the ambient density reduction, followed by the reduction of the exhaust gas recirculation to reach the targeted engine torque. However, this is done at the expense of an increase on fuel consumption and emissions. This work remarks experimentally the importance of a detailed understanding of the effects of the boost pressure and low-pressure exhaust gas recirculation (LP-EGR) settings when the engine runs low partial loads at different altitudes, accounting for extreme warm and cold ambient temperatures. The experimental results allow defining and justifying clear guidelines for an optimal engine calibration. Opposite to traditional strategies, a proper calibration of the boost pressure and LP-EGR enables reductions in specific fuel consumption along with the gas temperature increase at the exhaust aftertreatment system.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research has been partially supported by the Ministry of Science and Innovation from the Government of Spain through project PID2020-114289RB-I00. Additionally, the Ph.D. student Barbara Diesel has been funded by a grant from the Government of Generalitat Valenciana with reference ACIF/2018/109.BermĂşdez, V.; Serrano, J.; Piqueras, P.; Diesel, B. (2022). Fuel consumption and aftertreatment thermal management synergy in compression ignition engines at variable altitude and ambient temperature. International Journal of Engine Research. 23(11):1954-1966. https://doi.org/10.1177/1468087421103501519541966231

    Analysis of heavy-duty turbocharged diesel engine response under cold transient operation with a pre-turbo aftertreatment exhaust manifold configuration

    Full text link
    Diesel particulate filters are the most useful technology to reduce particulate matter from the exhaust gas of internal combustion engines. Although these devices have suffered an intense development in terms of the management of filtration and regeneration, the effect of the system location on the engine performance is still a key issue that needs to be properly addressed. The present work is focused on a computational study regarding the effects of a pre-turbo aftertreatment placement under full and partial load transient operation at constant engine speed and low wall temperature along the exhaust line. The aim of the paper is to provide a comprehensive understanding of the engine response to define the guidelines of a control strategy that is able to get the standards of engine driveability during sudden accelerations under restraining thermal transient conditions governed by the aftertreatment thermal inertia. The proposed strategy overcomes the lack of temperature at the inlet of the turbine caused by the thermal transient by means of the boost and EGR control. It leads to a proper management of the power in the exhaust gas for the expansion in the turbine.This work was partially supported by the Universitat Politecnica de Valencia [grant number INNOVA 2011-3182].Bermúdez, V.; Serrano, J.; Piqueras, P.; García Afonso, Ó. (2013). Analysis of heavy-duty turbocharged diesel engine response under cold transient operation with a pre-turbo aftertreatment exhaust manifold configuration. International Journal of Engine Research. 14(4):341-353. https://doi.org/10.1177/1468087412457670S341353144Payri, F., Pastor, J. V., Pastor, J. M., & Juliá, J. E. (2006). Diesel Spray Analysis by Means of Planar Laser-Induced Exciplex Fluorescence. International Journal of Engine Research, 7(1), 77-89. doi:10.1243/146808705x27723Torregrosa, A. J., Broatch, A., Margot, X., Marant, V., & Beauge, Y. (2004). Combustion chamber resonances in direct injection automotive diesel engines: A numerical approach. International Journal of Engine Research, 5(1), 83-91. doi:10.1243/146808704772914264Serrano, J. R., Arnau, F. J., Dolz, V., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 1: Data acquisition and post-processing. Applied Thermal Engineering, 29(1), 142-149. doi:10.1016/j.applthermaleng.2008.02.011Serrano, J. R., Climent, H., Guardiola, C., & Piqueras, P. (2009). Methodology for characterisation and simulation of turbocharged diesel engines combustion during transient operation. Part 2: Phenomenological combustion simulation. Applied Thermal Engineering, 29(1), 150-158. doi:10.1016/j.applthermaleng.2008.02.010Rakopoulos, C. D., Dimaratos, A. M., Giakoumis, E. G., & Rakopoulos, D. C. (2009). Evaluation of the effect of engine, load and turbocharger parameters on transient emissions of diesel engine. Energy Conversion and Management, 50(9), 2381-2393. doi:10.1016/j.enconman.2009.05.022Rakopoulos, C. D., Dimaratos, A. M., Giakoumis, E. G., & Rakopoulos, D. C. (2010). Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends. Energy, 35(12), 5173-5184. doi:10.1016/j.energy.2010.07.049Ishikawa, N. (2012). A study on emissions improvement of a diesel engine equipped with a mechanical supercharger. International Journal of Engine Research, 13(2), 99-107. doi:10.1177/1468087411434885Desantes, J. M., Luján, J. M., Pla, B., & Soler, J. A. (2012). On the combination of high-pressure and low-pressure exhaust gas recirculation loops for improved fuel economy and reduced emissions in high-speed direct-injection engines. International Journal of Engine Research, 14(1), 3-11. doi:10.1177/1468087412437623Johnson, T. V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10(5), 275-285. doi:10.1243/14680874jer04009Tourlonias, P., & Koltsakis, G. (2011). Model-based comparative study of Euro 6 diesel aftertreatment concepts, focusing on fuel consumption. International Journal of Engine Research, 12(3), 238-251. doi:10.1177/1468087411405104Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(9), 1134-1155. doi:10.1177/0954407011402278Payri, F., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Performance Analysis of a Turbocharged Heavy Duty Diesel Engine with a Pre-turbo Diesel Particulate Filter Configuration. SAE International Journal of Engines, 4(2), 2559-2575. doi:10.4271/2011-37-0004Galindo, J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2009). Description of a Semi-Independent Time Discretization Methodology for a One-Dimensional Gas Dynamics Model. Journal of Engineering for Gas Turbines and Power, 131(3). doi:10.1115/1.2983015Torregrosa, A. J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2011). A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 36(1), 671-684. doi:10.1016/j.energy.2010.09.047Desantes, J. M., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2012). Derivation of the method of characteristics for the fluid dynamic solution of flow advection along porous wall channels. Applied Mathematical Modelling, 36(7), 3134-3152. doi:10.1016/j.apm.2011.09.090Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.04

    On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Full text link
    [EN] Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels' end.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through Grant No. TRA2016-79185-R. Additionally, the Ph.D. student Enrique Jose Sanchis has been funded by a grant from Universitat Politecnica de Valencia with the reference FPI-2016-S2-1355.Bermúdez, V.; Serrano, J.; Piqueras, P.; Sanchis-Pacheco, EJ. (2017). On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters. Applied Sciences. 7(3):1-21. https://doi.org/10.3390/app7030234S12173Johnson, T. V. (2015). Review of Vehicular Emissions Trends. SAE International Journal of Engines, 8(3), 1152-1167. doi:10.4271/2015-01-0993Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2011). Assessment by means of gas dynamic modelling of a pre-turbo diesel particulate filter configuration in a turbocharged HSDI diesel engine under full-load transient operation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(9), 1134-1155. doi:10.1177/0954407011402278Subramaniam, M. N., Joergl, V., Keller, P., Weber, O., Toyoshima, T., & Vogt, C. D. (2009). Feasibility Assessment of a Pre-turbo After-Treatment System with a 1D Modeling Approach. SAE Technical Paper Series. doi:10.4271/2009-01-1276Luján, J. M., Bermúdez, V., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation. Energy, 80, 599-613. doi:10.1016/j.energy.2014.05.048Luján, J. M., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2015). Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation. Energy, 80, 614-627. doi:10.1016/j.energy.2014.12.017Lee, J. H., Paratore, M. J., & Brown, D. B. (2008). Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control. SAE International Journal of Fuels and Lubricants, 1(1), 96-101. doi:10.4271/2008-01-0072Watling, T. C., Ravenscroft, M. R., & Avery, G. (2012). Development, validation and application of a model for an SCR catalyst coated diesel particulate filter. Catalysis Today, 188(1), 32-41. doi:10.1016/j.cattod.2012.02.007Marchitti, F., Nova, I., & Tronconi, E. (2016). Experimental study of the interaction between soot combustion and NH3-SCR reactivity over a Cu–Zeolite SDPF catalyst. Catalysis Today, 267, 110-118. doi:10.1016/j.cattod.2016.01.027Konstandopoulos, A. G., & Kostoglou, M. (2014). Analysis of Asymmetric and Variable Cell Geometry Wall-Flow Particulate Filters. SAE International Journal of Fuels and Lubricants, 7(2), 489-495. doi:10.4271/2014-01-1510Bollerhoff, T., Markomanolakis, I., & Koltsakis, G. (2012). Filtration and regeneration modeling for particulate filters with inhomogeneous wall structure. Catalysis Today, 188(1), 24-31. doi:10.1016/j.cattod.2011.12.017Iwata, H., Konstandopoulos, A., Nakamura, K., Ogiso, A., Ogyu, K., Shibata, T., & Ohno, K. (2015). Further Experimental Study of Asymmetric Plugging Layout on DPFs: Effect of Wall Thickness on Pressure Drop and Soot Oxidation. SAE Technical Paper Series. doi:10.4271/2015-01-1016Bermúdez, V., Serrano, J. R., Piqueras, P., & García-Afonso, O. (2015). Pre-DPF water injection technique for pressure drop control in loaded wall-flow diesel particulate filters. Applied Energy, 140, 234-245. doi:10.1016/j.apenergy.2014.12.003Serrano, J. R., Bermudez, V., Piqueras, P., & Angiolini, E. (2015). Application of Pre-DPF Water Injection Technique for Pressure Drop Limitation. SAE Technical Paper Series. doi:10.4271/2015-01-0985Wang, Y., Wong, V., Sappok, A., & Munnis, S. (2013). The Sensitivity of DPF Performance to the Spatial Distribution of Ash Inside DPF Inlet Channels. SAE Technical Paper Series. doi:10.4271/2013-01-1584Sappok, A., Govani, I., Kamp, C., Wang, Y., & Wong, V. (2013). In-Situ Optical Analysis of Ash Formation and Transport in Diesel Particulate Filters During Active and Passive DPF Regeneration Processes. SAE International Journal of Fuels and Lubricants, 6(2), 336-349. doi:10.4271/2013-01-0519Torregrosa, A. J., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2011). A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters. Energy, 36(1), 671-684. doi:10.1016/j.energy.2010.09.047CMT-Motores Tèrmicos (Universitat Politècnica de València)www.openwam.orgLax, P. D., & Wendroff, B. (1964). Difference schemes for hyperbolic equations with high order of accuracy. Communications on Pure and Applied Mathematics, 17(3), 381-398. doi:10.1002/cpa.3160170311Serrano, J. R., Arnau, F. J., Piqueras, P., & García-Afonso, O. (2013). Application of the two-step Lax and Wendroff FCT and the CE-SE method to flow transport in wall-flow monoliths. International Journal of Computer Mathematics, 91(1), 71-84. doi:10.1080/00207160.2013.783206Desantes, J. M., Serrano, J. R., Arnau, F. J., & Piqueras, P. (2012). Derivation of the method of characteristics for the fluid dynamic solution of flow advection along porous wall channels. Applied Mathematical Modelling, 36(7), 3134-3152. doi:10.1016/j.apm.2011.09.090Serrano, J. R., Arnau, F. J., Piqueras, P., & García-Afonso, Ó. (2013). Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions. Energy, 58, 644-654. doi:10.1016/j.energy.2013.05.051Murtagh, M. J., Sherwood, D. L., & Socha, L. S. (1994). Development of a Diesel Particulate Filter Composition and Its Effect on Thermal Durability and Filtration Performance. SAE Technical Paper Series. doi:10.4271/940235Fino, D., Russo, N., Millo, F., Vezza, D. S., Ferrero, F., & Chianale, A. (2009). New Tool for Experimental Analysis of Diesel Particulate Filter Loading. Topics in Catalysis, 52(13-20), 2083-2087. doi:10.1007/s11244-009-9393-zKonstandopoulos, A. G., & Johnson, J. H. (1989). Wall-Flow Diesel Particulate Filters—Their Pressure Drop and Collection Efficiency. SAE Technical Paper Series. doi:10.4271/890405Lapuerta, M., Ballesteros, R., & Martos, F. J. (2006). A method to determine the fractal dimension of diesel soot agglomerates. Journal of Colloid and Interface Science, 303(1), 149-158. doi:10.1016/j.jcis.2006.07.066Serrano, J. R., Climent, H., Piqueras, P., & Angiolini, E. (2016). Filtration modelling in wall-flow particulate filters of low soot penetration thickness. Energy, 112, 883-898. doi:10.1016/j.energy.2016.06.121Logan, B. E., Jewett, D. G., Arnold, R. G., Bouwer, E. J., & O’Melia, C. R. (1995). Clarification of Clean-Bed Filtration Models. Journal of Environmental Engineering, 121(12), 869-873. doi:10.1061/(asce)0733-9372(1995)121:12(869)Koltsakis, G. C., & Stamatelos, A. M. (1997). Modes of Catalytic Regeneration in Diesel Particulate Filters. Industrial & Engineering Chemistry Research, 36(10), 4155-4165. doi:10.1021/ie970095mBissett, E. J. (1984). Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter. Chemical Engineering Science, 39(7-8), 1233-1244. doi:10.1016/0009-2509(84)85084-8Galindo, J., Serrano, J. R., Piqueras, P., & García-Afonso, Ó. (2012). Heat transfer modelling in honeycomb wall-flow diesel particulate filters. Energy, 43(1), 201-213. doi:10.1016/j.energy.2012.04.044Payri, F., Broatch, A., Serrano, J. R., & Piqueras, P. (2011). Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs). Energy, 36(12), 6731-6744. doi:10.1016/j.energy.2011.10.033Konstandopoulos, A. G., Skaperdas, E., & Masoudi, M. (2002). Microstructural Properties of Soot Deposits in Diesel Particulate Traps. SAE Technical Paper Series. doi:10.4271/2002-01-1015Bermúdez, V., Serrano, J. R., Piqueras, P., & Campos, D. (2015). Analysis of the influence of pre-DPF water injection technique on pollutants emission. Energy, 89, 778-792. doi:10.1016/j.energy.2015.05.14

    Utilization of muddy detritus as organic matter source by the fan mussel Pinna nobilis.

    Get PDF
    The knowledge of the feeding habits in marine species is fundamental to better understand their relationship with the environment. Although phytoplankton has been traditionally reported as the main food source consumed by the Mediterranean fan mussel Pinna nobilis, recent studies have revealed that detritus represents an important food source for this species. We analysed the degree of acceptance of muddy detritus and the utilisation of its organic matter (OM) by P. nobilis on a group of 21 individuals (30.3-59.7 cm of total shell height (Ht)). The specimens were collected between July and September 2012 in two areas (43°04´25” N; 5°46´7” E and 43°04´34” N; 5°47´32” E) of the Embiez archipelago, northwestern Mediterranean (France). Our studies show that P. nobilis retains high quantities of OM from muddy detritus (47.50 ± 11.23% of filtered OM) irrespectively of shell size. Smaller individuals, however, actively filter more detritus than large ones. The values of retained OM, together with previous studies on stomach contents, suggest that muddy detritus is a more important OM source than phytoplankton for this species

    Two-meson cloud contribution to the baryon antidecuplet self-energy

    Get PDF
    We study the self-energy of the SU(3) antidecuplet coming from two-meson virtual clouds. Assuming that the exotic Theta+ belongs to an antidecuplet representation with N(1710) as nucleon partner, we derive effective Lagrangians that describe the decay of N(1710) into N pi pi with two pions in s- or p-wave. It is found that the self-energies for all members of the antidecuplet are attractive, and the larger strangeness particle is more bound. From two-meson cloud, we obtain about 20 % of the empirical mass splitting between states with different strangeness.Comment: 4 pages, 2 figures, 1 table, Talk given at the 10th International Conference on Baryons (Baryons04), Palaiseau (France), October 25-29, 200

    Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures

    Full text link
    [EN] This paper presents a novel non-invasive technique to estimate the turbocharger shaft whirl motion. The aim of this article is to present a system for monitoring the shaft motion of a turbocharger, which will be used in turbocharger destructive testing. To achieve this, a camera and a light source were installed in a turbocharger test bench with a controlled lubrication circuit. An image recording methodology and a process algorithm have been developed, in order to estimate the shaft motion. This processing consists on differentiating specific zones of the image, in order to obtain their coordinates. Two reference points have been configured on the compressor side, which help to calculate the relative position of the shaft, avoiding the errors due to structural vibrations. Maximum eccentricity of the turbocharger has been determined and it has been compared with shaft motion when it is spinning in different conditions. A luminosity study has been also done, in order to improve the process and to obtain locus of shaft position in a picture exposition time period. The technique has been applied to diagnosis of a lubrication failure test and the main results will be presented in this article: like shaft motion figures; thermodynamic variables and pictures of the shaft while it is spinning at abnormal lubrication conditions. The measuring components used in this technique have the ability to withstand the catastrophic failure of the turbocharger in this type of test. © 2012 Elsevier Ltd.Pastor, JV.; Serrano, J.; Dolz, V.; López Hidalgo, M.; Bouffaud, F. (2012). Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures. Mechanical Systems and Signal Processing. 32:292-305. doi:10.1016/j.ymssp.2012.04.020S2923053

    Analysis of Passenger Car Turbocharged Diesel Engines Performance When Tested at Altitude and of the Altitude Simulator Device Used

    Full text link
    [EN] According to current worldwide trends for homologation vehicles in real driving conditions is forced to test the engines in altitude and in highly dynamic driving cycles in order to approach nowadays and next future emissions standard. Up to now, there were two main options to perform this type of tests: round-robin tests of the whole vehicle or hypobaric chambers, both with high costs and low repeatability. In this paper a new device is described, which can emulate ambient conditions at whatever altitude between sea level and 5000m high. Even it can be used to emulate ambient conditions at sea level when test bench is placed up to 2000m high. The main advantages of the altitude simulation equipment are as follows: dynamic emulation of all the psychrometric variables affecting the vehicles during round-robin tests; lower space usage and low-energy consumption. The altitude simulator (AS) has been validated comparing with results from a hypobaric chamber at different altitudes. Previously a research about the dispersion in the measurements of both testing devices has been done for assessing the results of the comparison experiment. Final conclusion resulted in the same operating performance and emissions of the studied engine with both types of testing equipment for altitude simulation.FEDER, Government of Spain through Project TRA2016-79185-R (Funder ID: 10.13039/501100002924).Broatch, A.; Bermúdez, V.; Serrano, J.; Tabet, R.; Gómez, J.; Bender, S. (2019). Analysis of Passenger Car Turbocharged Diesel Engines Performance When Tested at Altitude and of the Altitude Simulator Device Used. Journal of Engineering for Gas Turbines and Power. 141(8):1-9. https://doi.org/10.1115/1.4043395S191418Hiroyasu, H., Arai, M., & Tabata, M. (1989). Empirical Equations for the Sauter Mean Diameter of a Diesel Spray. SAE Technical Paper Series. doi:10.4271/890464Gómez, J., 2018, “Development of an Altitude Simulator and Analysis of the Performance and Emissions of Turbocharged Diesel Engines at Different Altitudes,” Ph.D. thesis, Universitat Politècnica de València, Valencia, Spain.https://riunet.upv.es/bitstream/handle/10251/101284/G%C3%93MEZ%20-%20Development%20of%20an%20altitude%20simulator%20and%20analysis%20of%20the%20performance%20and%20emissions%20of%20tur....pdf?sequence=1Toff, W. D., Jones, C. I., Ford, I., Pearse, R. J., Watson, H. G., Watt, S. J., … Greaves, M. (2006). Effect of Hypobaric Hypoxia, Simulating Conditions During Long-Haul Air Travel, on Coagulation, Fibrinolysis, Platelet Function, and Endothelial Activation. JAMA, 295(19), 2251. doi:10.1001/jama.295.19.2251Bermúdez, V., Serrano, J. R., Piqueras, P., Gómez, J., & Bender, S. (2017). Analysis of the role of altitude on diesel engine performance and emissions using an atmosphere simulator. International Journal of Engine Research, 18(1-2), 105-117. doi:10.1177/146808741667956

    Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant

    Full text link
    [EN] The aim of this work was to evaluate the feasibility of power ultrasound (US) application during the low temperature drying (LTD) of eggplant, analyzing the influence of the process variables linked to the air flow (velocity and temperature) on the drying kinetics and different quality aspects of the dehydrated product. For that purpose, eggplant (Solanum melongena var. Black Enorma) cubes (8.6 mm side) were dried at different air velocities (1, 2, 4 and 6 m/s) and temperatures (10, 0 and −10 ◦C) without (AIR) and with (AIR + US) US application. The rise in the air velocity and temperature led to an increase in the drying rate in AIR experiments. US application accelerated the drying process under every experimental condition tested, shortening the drying time by up to 87%. As for the quality parameters, no remarkable influence of the process variables (US application, air velocity and temperature) on the rehydration, reconstitution in olive oil or hardness of the rehydrated product was observed.The authors acknowledge the financial support of the Spanish Ministerio de Economia y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through project DPI2012-37466-CO3-03 and the FPI fellowship (BES-2010-033460) granted to J.V. Santacatalina and the Generalitat Valenciana through the project PROMETE0II/2014/005.Santacatalina, JV.; Soriano, J.; Cárcel CarriĂłn, JA.; GarcĂ­a PĂ©rez, JV. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing. 100:282-291. https://doi.org/10.1016/j.fbp.2016.07.010S28229110

    High-degree atrioventricular block. An unusual presentation of Takotsubo cardiomyopathy: a case report

    Get PDF
    Background: Takotsubo cardiomyopathy is a non-ischemic cardiomyopathy characterized by acute left ventricular systolic dysfunction with transient wall motion abnormalities without a culprit coronary stenosis or other concurrent diagnoses. Its coexistence with transient high-degree AV block is very infrequent. Case presentation: A 61-year-old man presented with a new onset of high degree AV block without ST segment deviations developing an anterior and apical dyskinesia with a low left ventricular ejection fraction in the absence of coronary artery disease. Conclusion: Atrioventricular block is an uncommon presentation of Takotsubo syndrome. The management of patients with relevant conduction disorders in this scenario is a challenge for the clinician. In case of persistence of advanced conduction disorders, it seems appropriate to implant a pacemaker

    Fault expertise in internal combustion engine turbocharger

    Full text link
    [EN] In this paper, the effects occur in parts of internal combustion engine turbocharger, which have been tested in critical lubrication conditions (low pressure in the lubrication system, reduced oil flow in the axial bearing, and lubrication interruption). The purpose of these tests was to obtain evidence of damage having different parts of turbochargers, once these have failed tests under controlled parameters. With this work, a contribution is generated to identify the causes of failures that occur in turbochargers. With this identification of fault generate a contribution to the possible improvement in the design of the different parts of turbochargers and contribute in improving management control of the internal combustion engines to avoid these faults.[ES] En este trabajo, se presentan los efectos en las partes de turbocompresores de motores de combustión interna alternativos (MCIA), que han sido ensayados en condiciones críticas de lubricación (baja presión en el sistema de lubricación, disminución de flujo de aceite en el cojinete axial, e interrupción en la lubricación). La finalidad de estos ensayos, ha sido el de obtener evidencias de los daños que presentan las diferentes partes de los turbocompresores, una vez que estos han fallado bajo parámetros controlados de los ensayos. Con este trabajo, se genera un aporte para identificar las causas de los fallos que se producen en turbocompresores de MCIA. Con esta identificación de los fallos se pretende generar un aporte para la posible mejora en los diseños de las diferentes partes de turbocompresores, así como aportar en la mejora de la gestión de control de los MCIA para evitar estos fallos. Palabras Clave: Fallos en turbocompresores, condiciones críticas, baja presión de lubricación, retraso en la lubricación.El presente estudio ha sido desarrollado gracias al apoyo de las becas del Senescyt del gobierno ecuatoriano. Y gracias a la colaboración del grupo de investigadores del departamento de motores térmicos de la Universidad Politécnica de Valencia.López Hidalgo, MA.; Serrano, J.; Dolz, V. (2017). Peritaje de fallos en turbocompresores de motores de combustión interna alternativos. DYNA INGENIERIA E INDUSTRIA. 92(1):82-87. doi:10.6036/7995S828792
    • …
    corecore