614 research outputs found

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Molecular line intensities as measures of cloud masses - II. Conversion factors for specific galaxy types

    Get PDF
    We present theoretically-established values of the CO-to-H2 and C-to-H2 conversion factors that may be used to estimate the gas masses of external galaxies. We consider four distinct galaxy types, represented by M51, NGC 6946, M82 and SMC N27. The physical parameters that best represent the conditions within the molecular clouds in each of the galaxy types are estimated using a chi^2 analysis of several observed atomic fine structure and CO rotational lines. This analysis is explored over a wide range of density, radiation field, extinction, and other relevant parameters. Using these estimated physical conditions in methods that we have previously established, CO-to-H2 conversion factors are then computed for CO transitions up to J=9-8. For the conventional CO(1-0) transition, the computed conversion factor varies significantly below and above the canonical value for the Milky Way in the four galaxy types considered. Since atomic carbon emission is now frequently used as a probe of external galaxies, we also present, for the first time, the C-to-H2 conversion factor for this emission in the four galaxy types considered.Comment: 14 pages, 11 figures, accepted for publication in MNRA

    Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1(-/7) mice

    Get PDF
    BackgroundThe use of Akkermansia muciniphila as potential therapeutic intervention is receiving increasing attention. Health benefits attributed to this bacterium include an improvement of metabolic disorders and exerting anti-inflammatory effects. The abundance of A. muciniphila is associated with a healthy gut in early mid- and later life. However, the effects of A. muciniphila on a decline in intestinal health during the aging process are not investigated yet. We supplemented accelerated aging Ercc1(-/7) mice with A. muciniphila for 10weeks and investigated histological, transcriptional and immunological aspects of intestinal health.ResultsThe thickness of the colonic mucus layer increased about 3-fold after long-term A. muciniphila supplementation and was even significantly thicker compared to mice supplemented with Lactobacillus plantarum WCFS1. Colonic gene expression profiles pointed towards a decreased expression of genes and pathways related to inflammation and immune function, and suggested a decreased presence of B cells in colon. Total B cell frequencies in spleen and mesenteric lymph nodes were not altered after A. muciniphila supplementation. Mature and immature B cell frequencies in bone marrow were increased, whereas B cell precursors were unaffected. These findings implicate that B cell migration rather than production was affected by A. muciniphila supplementation. Gene expression profiles in ileum pointed toward a decrease in metabolic- and immune-related processes and antimicrobial peptide production after A. muciniphila supplementation. Besides, A. muciniphila decreased the frequency of activated CD80(+)CD273(-) B cells in Peyer's patches. Additionally, the increased numbers of peritoneal resident macrophages and a decrease in Ly6C(int) monocyte frequencies in spleen and mesenteric lymph nodes add evidence for the potentially anti-inflammatory properties of A. muciniphila.ConclusionsAltogether, we show that supplementation with A. muciniphila prevented the age-related decline in thickness of the colonic mucus layer and attenuated inflammation and immune-related processes at old age. This study implies that A. muciniphila supplementation can contribute to a promotion of healthy aging.Peer reviewe

    Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS

    Get PDF
    The effect of healthy ageing on visual cortical activation is still to be fully explored. This study aimed to elucidate whether the haemodynamic response (HDR) of the visual cortex altered as a result of ageing. Visually normal (healthy) participants were presented with a simple visual stimulus (reversing checkerboard). Full optometric screening was implemented to identify two age groups: younger adults (n = 12, mean age 21) and older adults (n = 13, mean age 71). Frequency-domain Multi-distance (FD-MD) functional Near-Infrared Spectroscopy (fNIRS) was used to measure absolute changes in oxygenated [HbO] and deoxygenated [HbR] haemoglobin concentrations in the occipital cortices. Utilising a slow event-related design, subjects viewed a full field reversing checkerboard with contrast and check size manipulations (15 and 30 minutes of arc, 50% and 100% contrast). Both groups showed the characteristic response of increased [HbO] and decreased [HbR] during stimulus presentation. However, older adults produced a more varied HDR and often had comparable levels of [HbO] and [HbR] during both stimulus presentation and baseline resting state. Younger adults had significantly greater concentrations of both [HbO] and [HbR] in every investigation regardless of the type of stimulus displayed (p<0.05). The average variance associated with this age-related effect for [HbO] was 88% and [HbR] 91%. Passive viewing of a visual stimulus, without any cognitive input, showed a marked age-related decline in the cortical HDR. Moreover, regardless of stimulus parameters such as check size, the HDR was characterised by age. In concurrence with present neuroimaging literature, we conclude that the visual HDR decreases as healthy ageing proceeds

    Testing the effects of opacity and the chemical mixture on the excitation of pulsations in B stars of the Magellanic Clouds

    Full text link
    The B-type pulsators known as \beta Cephei and Slowly Pulsating B (SPB) stars present pulsations driven by the \kappa mechanism, which operates thanks to an opacity bump due to the iron group elements. In low-metallicity environments such as the Magellanic Clouds, \beta Cep and SPB pulsations are not expected. Nevertheless, recent observations show evidence for the presence of B-type pulsator candidates in both galaxies. We seek an explanation for the excitation of \beta Cep and SPB modes in those galaxies by examining basic input physics in stellar modelling: i) the specific metal mixture of B-type stars in the Magellanic Clouds; ii) the role of a potential underestimation of stellar opacities. We first derive the present-day chemical mixtures of B-type stars in the Magellanic Clouds. Then, we compute stellar models for that metal mixture and perform a non-adiabatic analysis of these models. In a second approach, we simulate parametric enhancements of stellar opacities due to different iron group elements. We then study their effects in models of B stars and their stability. We find that adopting a representative chemical mixture of B stars in the Small Magellanic Cloud cannot explain the presence of B-type pulsators there. An increase of the opacity in the region of the iron-group bump could drive B-type pulsations, but only if this increase occurs at the temperature corresponding to the maximum contribution of Ni to this opacity bump. We recommend an accurate computation of Ni opacity to understand B-type pulsators in the Small Magellanic Cloud, as well as the frequency domain observed in some Galactic hybrid \beta Cep-SPB stars.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    The evolution of autotomy in leaf-footed bugs

    Get PDF
    Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic

    Climate Change and Trophic Response of the Antarctic Bottom Fauna

    Get PDF
    BACKGROUND: As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. METHODOLOGY/PRINCIPAL FINDINGS: We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop approximately 41 Ma (million years ago), eliminated durophagous predators-teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)-from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, approximately 33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. CONCLUSIONS/SIGNIFICANCE: Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes
    corecore