311 research outputs found

    Resolving on 100 pc scales the UV-continuum in Lyman-α\alpha emitters between redshift 2 to 3 with gravitational lensing

    Get PDF
    We present a study of seventeen LAEs at redshift 2<z<<z<3 gravitationally lensed by massive early-type galaxies (ETGs) at a mean redshift of approximately 0.5. Using a fully Bayesian grid-based technique, we model the gravitational lens mass distributions with elliptical power-law profiles and reconstruct the UV-continuum surface brightness distributions of the background sources using pixellated source models. We find that the deflectors are close to, but not consistent with isothermal models in almost all cases, at the 2σ2\sigma-level. We take advantage of the lensing magnification (typically Ό≃\mu\simeq 20) to characterise the physical and morphological properties of these LAE galaxies. From reconstructing the ultra-violet continuum emission, we find that the star-formation rates range from 0.3 to 8.5 M⊙_{\odot} yr−1^{-1} and that the galaxies are typically composed of several compact and diffuse components, separated by 0.4 to 4 kpc. Moreover, they have peak star-formation rate intensities that range from 2.1 to 54.1 M⊙_{\odot} yr−1^{-1} kpc−2^{-2}. These galaxies tend to be extended with major axis ranging from 0.2 to 1.8 kpc (median 561 pc), and with a median ellipticity of 0.49. This morphology is consistent with disk-like structures of star-formation for more than half of the sample. However, for at least two sources, we also find off-axis components that may be associated with mergers. Resolved kinematical information will be needed to confirm the disk-like nature and possible merger scenario for the LAEs in the sample.Comment: 19 pages, 7 figures, accepted for publication on MNRA

    ALMA imaging of SDP.81 - I. A pixelated reconstruction of the far-infrared continuum emission

    Get PDF
    We present a sub-50 pc-scale analysis of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data. We model both the mass distribution of the gravitational lensing galaxy and the pixelated surface brightness distribution of the background source using a novel Bayesian technique that fits the data directly in visibility space. We find the 1 and 1.3 mm dust emission to be magnified by a factor of u_tot = 17.6+/-0.4, giving an intrinsic total star-formation rate of 315+/-60 M_sol/yr and a dust mass of 6.4+/-1.5*10^8 M_sol. The reconstructed dust emission is found to be non-uniform, but composed of multiple regions that are heated by both diffuse and strongly clumped star-formation. The highest surface brightness region is a ~1.9*0.7 kpc disk-like structure, whose small extent is consistent with a potential size-bias in gravitationally lensed starbursts. Although surrounded by extended star formation, with a density of 20-30+/-10 M_sol/yr/kpc^2, the disk contains three compact regions with densities that peak between 120-190+/-20 M_sol/yr/kpc^2. Such star-formation rate densities are below what is expected for Eddington-limited star-formation by a radiation pressure supported starburst. There is also a tentative variation in the spectral slope of the different star-forming regions, which is likely due to a change in the dust temperature and/or opacity across the source.Comment: MNRAS accepted 2015 April 1

    ALMA imaging of SDP.81 - II. A pixelated reconstruction of the CO emission lines

    Get PDF
    We present a sub-100 pc-scale analysis of the CO molecular gas emission and kinematics of the gravitational lens system SDP.81 at redshift 3.042 using Atacama Large Millimetre/submillimetre Array (ALMA) science verification data and a visibility-plane lens reconstruction technique. We find clear evidence for an excitation dependent structure in the unlensed molecular gas distribution, with emission in CO (5-4) being significantly more diffuse and structured than in CO (8-7). The intrinsic line luminosity ratio is r_8-7/5-4 = 0.30 +/- 0.04, which is consistent with other low-excitation starbursts at z ~ 3. An analysis of the velocity fields shows evidence for a star-forming disk with multiple velocity components that is consistent with a merger/post-coalescence merger scenario, and a dynamical mass of M(< 1.56 kpc) = 1.6 +/- 0.6 x 10^10 M_sol . Source reconstructions from ALMA and the Hubble Space Telescope show that the stellar component is offset from the molecular gas and dust components. Together with Karl G. Jansky Very Large Array CO (1-0) data, they provide corroborative evidence for a complex ~2 kpc-scale starburst that is embedded within a larger ~15 kpc structure.Comment: MNRAS accepted, 6th July 201

    SHARP - I. A high-resolution multi-band view of the infra-red Einstein ring of JVAS B1938+666

    Get PDF
    We present new mass models for the gravitational lens system B1938+666, using multi-wavelength data acquired from Keck adaptive optics (AO) and Hubble Space Telescope (HST) observations. These models are the first results from the Strong-lensing at High Angular Resolution Program (SHARP), a project designed to study known quadruple-image and Einstein ring lenses using high-resolution imaging, in order to probe their mass distributions in unprecedented detail. Here, we specifically highlight differences between AO- and HST-derived lens models, finding that -- at least when the lens and source galaxies are both bright and red, and the system has a high degree of circular symmetry -- AO-derived models place significantly tighter constraints on model parameters. Using this improved precision, we infer important physical properties about the B1938+666 system, including the mass density slope of the lensing galaxy (gamma = 2.045), the projected dark matter mass fraction within the Einstein radius (M_dark/M_lens = 0.55), and the total magnification factor of the source galaxy (~ 13). Additionally, we measure an upper-limit constraint on luminous substructure (M_V > 16.2), based on the non-detection of bright satellite galaxies in all data sets. Finally, we utilize the improved image resolution of the AO data to reveal the presence of faint arcs outside of the primary Einstein ring. The positions and orientations of these arcs raise the intriguing possibility that B1938+666 has a second source galaxy, located at a more distant redshift. However, future work is needed to verify this hypothesis.Comment: 12 pages, 7 figures; Accepted for publication in MNRA

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012

    Inference of the Cold Dark Matter substructure mass function at z=0.2 using strong gravitational lenses

    Get PDF
    We present the results of a search for galaxy substructures in a sample of 11 gravitational lens galaxies from the Sloan Lens ACS Survey. We find no significant detection of mass clumps, except for a luminous satellite in the system SDSS J0956+5110. We use these non-detections, in combination with a previous detection in the system SDSS J0946+1006, to derive constraints on the substructure mass function in massive early-type host galaxies with an average redshift z ~ 0.2 and an average velocity dispersion of 270 km/s. We perform a Bayesian inference on the substructure mass function, within a median region of about 32 kpc squared around the Einstein radius (~4.2 kpc). We infer a mean projected substructure mass fraction f=0.0076−0.0052+0.0208f = 0.0076^{+0.0208}_{-0.0052} at the 68 percent confidence level and a substructure mass function slope α\alpha < 2.93 at the 95 percent confidence level for a uniform prior probability density on alpha. For a Gaussian prior based on Cold Dark Matter (CDM) simulations, we infer f=0.0064−0.0042+0.0080f = 0 .0064^{+0.0080}_{-0.0042} and a slope of α\alpha = 1.90−0.098+0.098^{+0.098}_{-0.098} at the 68 percent confidence level. Since only one substructure was detected in the full sample, we have little information on the mass function slope, which is therefore poorly constrained (i.e. the Bayes factor shows no positive preference for any of the two models).The inferred fraction is consistent with the expectations from CDM simulations and with inference from flux ratio anomalies at the 68 percent confidence level.Comment: Accepted for publication on MNRAS, some typos corrected and some important references adde
    • 

    corecore